

Agilent Technologies E2950 Series InfiniBand Exerciser

API Reference

Agilent Technologies

 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Important Notice

© Agilent Technologies, Inc. 2002

Manual Part Number

5988-5061EN

Revision

Revision 2.0, June 2002

Printed in Germany

Agilent Technologies,
Deutschland GmbH
Herrenberger Str. 130
71034 Boeblingen, Germany

Warranty

The material contained in this
document is provided “as is,” and is
subject to being changed, without
notice, in future editions. Further, to
the maximum extent permitted by
applicable law, Agilent disclaims all
warranties, either express or
implied, with regard to this manual
and any information contained
herein, including but not limited to
the implied warranties of
merchantability and fitness for a
particular purpose. Agilent shall not
be liable for errors or for incidental
or consequential damages in
connection with the furnishing, use,
or performance of this document or
of any information contained herein.
Should Agilent and the user have a
separate written agreement with
warranty terms covering the
material in this document that
conflict with these terms, the
warranty terms in the separate
agreement shall control.

Technology Licenses

The hardware and/or software
described in this document are
furnished under a license and may
be used or copied only in
accordance with the terms of such
license.

Restricted Rights Legend

If software is for use in the
performance of a U.S. Government
prime contract or subcontract,
Software is delivered and licensed
as “Commercial computer software”
as defined in DFAR 252.227-7014
(June 1995), or as a “commercial
item” as defined in FAR 2.101(a) or
as “Restricted computer software”
as defined in FAR 52.227-19 (June
1987) or any equivalent agency
regulation or contract clause. Use,
duplication or disclosure of
Software is subject to Agilent
Technologies’ standard commercial
license terms, and non-DOD
Departments and Agencies of the
U.S. Government will receive no
greater than Restricted Rights as
defined in FAR 52.227-19(c)(1-2)
(June 1987). U.S. Government users
will receive no greater than Limited
Rights as defined in FAR 52.227-14
(June 1987) or DFAR 252.227-7015
(b)(2) (November 1995), as
applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a
hazard. It calls attention to an
operating procedure, practice, or the
like that, if not correctly performed
or adhered to, could result in
damage to the product or loss of
important data. Do not proceed
beyond a CAUTION notice until the
indicated conditions are fully
understood and met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or the
like that, if not correctly performed
or adhered to, could result in
personal injury or death. Do not
proceed beyond a WARNING notice
until the indicated conditions are
fully understood and met.

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference Content-1

Table of Contents

Programming the E2953A/E2954A 1-1
Packet Handling Concept 1-1

Sending Packets 1-2
Receiving Packets 1-4
Exception and Error Handling 1-5

Performance Measurement 1-7
Link Packet and Protocol Observer 1-8
Control Command Language 1-9

TCL Interface 1-9
Installed TCL Sample Scripts 1-11

Classes of the C++ Interface 2-1
C++ Interface 2-1

Generator Class 2-2
Packet Classes 2-2
Packet Handler Classes 2-4
CallBack Classes 2-6
Property Value Class 2-7
MAD Attribute Classes 2-7
Subnet Management Attribute Classes 2-10
IGCPerformance Class 2-12
IGCProtocolObserver Class 2-13
IGCLinkPacketStatus Class 2-14
Error Class 2-15
Miscellaneous Classes 2-15

Table of Contents

Content-2 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Methods Common to All Classes 2-16
Print 2-16
Operator << 2-17

Methods of the IGCGenerator Class 2-18
AssertTriggerOut 2-21
Connect 2-21
Disconnect 2-22
EnableMADHandling 2-22
GetInfo 2-23
GetSubnMgmtAttribute 2-23
HardwareUpdate 2-24
IBLinkReset 2-24
IsMADHandling 2-25
IsConnected 2-25
IGCGenerator, Constructor 2-26
~IGCGenerator, Destructor 2-26
LaneSkewGet 2-27
LaneSkewSet 2-28
LinkPacketRecRun 2-29
LinkPacketRecStop 2-29
LinkStateWrite 2-30
LinkPacketStatusRead 2-30
LinkTrainingStateWrite 2-31
OperationalVLRead 2-32
OperationalVLWrite 2-32
PacketInit 2-33
PacketSend 2-33
PatternActionWrite 2-34
PatternMaskWrite 2-35
PatternOffsetWrite 2-36

 Table of Contents

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference Content-3

PatternValueWrite 2-37
PerformanceCtrMaskRead 2-38
PerformanceCtrMaskWrite 2-39
PerformanceRead 2-40
PerformanceStart 2-40
PerformanceStop 2-40
Ping 2-41
ProtocolObserverRead 2-41
ProtocolObserverReset 2-41
RegisterCallBack 2-42
RegisterPacketHandler 2-43
Reset 2-43
ResetPacketSend 2-44
SkipTestRun 2-44
StatusRead 2-45
TransmitInit 2-45
TransmitProg 2-46
TransmitRun 2-46
TransmitSet 2-47
TransmitStep 2-47
TransmitStop 2-48
UnregisterCallBack 2-48
UnregisterPacketHandler 2-49
VLAllResourceRead 2-49
VLAllResourceWrite 2-50
VLResourceRead 2-50
VLResourceWrite 2-51
VLStateRead 2-52
VLStateWrite 2-52

Table of Contents

Content-4 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Methods of the IGCGeneratorList Class 2-53
IGCGeneratorList, Constructor 2-53
~IGCGeneratorList, Destructor 2-54
Count 2-54
Get 2-55
Operator[] 2-55
Rescan 2-56

Methods of the IGCGeneratorInfo Class 2-57
GetPort 2-57
GetSerial 2-58
GetProductString 2-58
Print 2-59

Methods of the IGCPacket Class 2-60
AppendBuffer 2-61
AppendPayloadBuffer 2-62
Clone 2-62
DeletePacket 2-63
GetActualLength 2-63
GetICRC 2-63
GetType 2-64
GetPayload 2-64
GetVCRC 2-65
HasPayload 2-65
IGCPacket, Destructor 2-66
NewPacket 2-66
SetPacketLength 2-67
SetPayload 2-67
SetPRBSPayloadSize 2-68

 Table of Contents

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference Content-5

Methods of the IGCRawPacket Class 2-69
IGCRawPacket, Constructor 2-71
IGCRawPacket, Destructor 2-71

Methods of the IGCRawIPPacket Class 2-72
IGCRawIPPacket, Constructor 2-74
IGCRawIPPacket, Destructor 2-74

Methods of the IGCIBAPacket Class 2-75
Init 2-77
IGCIBAPacket, Default Constructor 2-77
IGCIBAPacket, Constructor for the Class 2-78
~IGCIBAPacket, Destructor 2-78

Methods of the IGCMADPacket Class 2-79
IGCMADPacket, Constructor 2-81
~IGCMADPacket, Destructor 2-81

Methods of the IGCSMPPacket Class 2-82
IGCSMPPacket, Constructor 2-84
~IGCSMPPacket, Destructor 2-84

Methods of the IGCBuffer Class 2-85
IGCBuffer, Constructor 2-86
IGCBuffer, Destructor 2-86
ReadFile 2-86
WriteFile 2-87
SaveFile 2-87
Cmp 2-87
PeekData 2-88
Push 2-88
Pop 2-89
PopData 2-89
SetAt 2-90
Size 2-90

Table of Contents

Content-6 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

GetAt 2-91
Fill 2-91
FillRandom 2-92
Init 2-92

Methods of the IGCVal Class 2-93
IGCVal, Constructor 2-93
IGCVal, Destructor 2-94
Constructor by Type 2-94
Copy Constructor 2-95
Type Conversions 2-95
Const Conversions 2-96
Non Const Conversions 2-97
Assignments 2-98
Comparisons 2-99

Methods of the IGCObject Class 2-100
Set 2-101
Get 2-101
Default 2-102
CopyProps 2-102

Methods of the IGCStatus Class 2-103
IGCStatus, Constructor 2-103
~IGCStatus, Destructor 2-104
Print 2-104

Methods of the IGCPacketHandler Class 2-105
~IGCPacketHandler, Destructor 2-106
CheckPacket 2-106
HandlePacket 2-107
GetGenerator 2-107

 Table of Contents

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference Content-7

Methods of the IGCPacketHandlerTcl Class 2-108
IGCPacketHandlerTcl 2-109
~IGCPacketHandlerTcl, Destructor 2-109

Methods of the IGCCallBack Class 2-110
IGCCallBack, Constructor 2-111
~IGCCallBack, Destructor 2-111
Notify 2-112
SetNotifyMask 2-113
QueryNotifyMask 2-113

Methods of the IGCCallBackTcl Class 2-114
IGCCallBackTcl 2-115

Methods of the Error Class 2-116
Clear 2-117
Error 2-117
IGCError, Constructor 2-117
IGCError, Copy Constructor 2-118
IGCError, Destructor 2-118
GetErrorText 2-118
Operator 2-119
Print 2-119

Enumeration Definitions 3-1
EErrtype 3-1
IGCGenerator::IGEPropName 3-2
IGCPacket::IGEPropName 3-2
IGCVal::Opcode 3-2

Content-8 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Properties and Programmatic Settings 4-1
Generator Properties 4-1
Status Properties 4-3
IGCNodeInfo Properties 4-6
IGCNodeDescription Properties 4-7
IGCGUIDInfo Properties 4-7
IGCPortInfo Properties 4-8
Packet Properties 4-11

Generic Packet Properties 4-12
Local Routing Header Properties 4-14
Global Routing Header Properties 4-15
Base Transport Header Properties 4-16
Extended Transport Header Fields 4-17

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 1-1

Programming the E2953A/E2954A

This chapter briefly explains the basic ideas behind the programming
model of the E2953A/E2954A. The concept is explained for the C++
interface. The TCL interface is built in a similar way.

The main programming interface to the E2953A/E2954A is based on the
C++ programming language. This C++ interface can also be accessed from
a TCL shell to provide the capabilities of a script language. The TCL
commands are completely based on the C++ calls. Both interfaces can be
used to integrate the E2953A/E2954A into various test environments and
third party test software.

Packet Handling Concept

For every E2953A/E2954A InfiniBand generator in use, you need to
create one instance of the class IGCGenerator. This class provides all the
necessary functions to interact with the generator. It also provides the
entire status information and controls the InfiniBand link. The
InfiniBand portinfo struct is managed here too.

For every E2953A/E2954A generator that is connected, there can be only
one controlling generator object. However, you are free to create as many
generator objects as there are devices connected to the controlling PC. By
default, a newly created generator class is in off-line mode. It needs to get
connected to a real device before it can provide all of its functionality.

Basically, every class with property values has the methods Set and Get to
allow it to write and read these properties respectively. Enum values
belonging to the appropriate class identify the properties. For a detailed

Programming the E2953A/E2954A Packet Handling Concept

1-2 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

list of these properties refer to “Properties and Programmatic Settings”
on page 4-1.

Sending Packets
In order to send out packets, you have to create objects of various packet
classes and set the internal properties of these packet objects as desired.
There are a number of different classes that derive from IGCPacket. These
can be selected by yourself depending on the type of packet that should
be sent. The following figure shows the relationship between the different
packet classes.

All types of packets are derived from the class IGCObject which
implements the set and get functionality for these classes. Using the Set()
and Get() functions you can manipulate packet properties.

 Figure 1 Class Architecture of the IGCPacket Package

IGCRawIPPacketIGCRawPacket

IGCMADPacket

IGCIBAPacket

IGCPacket

IGCObjectIGCObject

When an InfiniBand packet is to be created, you first need to set the
opcode and the packet type (local or global) in order to obtain access to
all the other packet properties. The class IGCIBAPacket provides the
method Init() for this purpose.

To simplify setting up the packet, you can use the generator class to
initialize the packet with all the information that is held in the portinfo

 Packet Handling Concept Programming the E2953A/E2954A

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 1-3

struct within the generator. The generator provides the method
PacketInit() for that purpose.

Having created an InfiniBand packet (or a raw packet), you can send it
out in one of two ways:

• Direct send

Using the method PacketSend(), you can directly pass an object of the
type IGCPacket (or derived from IGCPacket) to the generator class which
then immediately sends out the packet.

• Memory based packet send

Using the method TransmitProg(), you can program up to 512 Kbytes
for the E2953A and up to 2048 Kbytes of packets in the transmit
memory. Use the call TransmitRun()to start the transfer. You can repeat
the programmed packet sequence if required.

By mixing these two methods you can create different test scenarios. For
example, you can flood the network with a large amount of low priority
packets and then insert high priority packets once in a while to check
that all participating switches and routers are capable of handling the
priorities correctly.

The IGCPacket object can be used several times and can even be sent out
from different generators. Using the method AppendBuffer() and
NewPacket() a packet can be transformed into a byte stream or vice versa.

Programming the E2953A/E2954A Packet Handling Concept

1-4 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Receiving Packets
The E2953A/E2954A generator receives packets in two different ways.
They represent default behavior:

• MAD packets (SMD) are stored in an extra FIFO that is exclusively
reserved for this type of packet.

• Standard InfiniBand packets are stored in the receive memory.
Depending on the mode of the generator, the hardware either controls
the incoming packets via flow control packets or takes all packets
without checking if they have been picked up by the software (data
sink mode).

In order to handle packets you need to register a packet handler with the
generator class. This involves deriving a class from the class
IGCPacketHandler and writing the two methods CheckPacket() and
HandlePacket(). These exist as purely virtual methods in IGCPacketHandler.
CheckPacket() gets called to determine whether the packet handler should
deal with the packet. Having done this, the function returns.
Subsequently, the base class IGCPacketHandler manages the call to
HandlePacket().

An additional class derived from IGCPacketHandler is included with the
product:

• IGCPacketHandlerTcl provides a class that can handle tcl scripts. This
allows a tcl script to handle incoming packets, simplifying this task.

Subnet management is implemented as an SMA (subnet management
agent), programmed as a tcl script (refer to “TCL Interface” on page 1-9).

NOTE

 Packet Handling Concept Programming the E2953A/E2954A

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 1-5

Exception and Error Handling
This section shows the error mechanisms implemented by the C++ and
the TCL interfaces.

Error Mechanisms for the C++ Interface

The following code block shows an example of how to use the exception
handling with the API.

try
{

IGCGenerator myGenerator;
myGenerator.Connect(0);
myGenerator.Foo();

}
catch (IGCError err)
{

// Error occurred in try block
// Do error handling here, e.g. print error message:
cerr << "Error occurred: " << err;

}

To throw an error, use a line similar to the one below:

throw(IGCError(IGCError::IGE_FATAL, "Cannot close device"));

See also the descriptions in “Methods of the IGCPacketHandler Class” on
page 2-105 and “EErrtype” on page 3-1.

Programming the E2953A/E2954A Packet Handling Concept

1-6 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Error Mechanism for the TCL Interface

The following example script shows how an E2953A/E2954A gets
connected using the TCL script language and shows the error mechanism
in case the connect was not successful.

if { [catch {
set portnum 0
set gen [new_IGCGenerator]
IGCGenerator_Connect $gen $portnum
} result]} {

error while establishing connection
puts stderr "ERROR: Cannot connect to generator at port $portnum:

$result"
} else {
puts "Connected on port $portnum"

}

In order to throw an error, use the following script command.

error "Fatal error: Cannot <do whatever the task was>"

The error command terminates the script unless the error is caught by a
catch command. Errors from the class igapi are automatically caught,
that is, the error message is printed to stderr (interactive mode) and the
corresponding tcl function returns with TCL_ERROR.

 Performance Measurement Programming the E2953A/E2954A

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 1-7

Performance Measurement

The performance measurement counts values such as the size of payload,
the number of good and bad packets and the number of link packets
received and transmitted by the exerciser. The two performance counters
that hold the result of the performance measurement are implemented in
the hardware of the E2953A/E2954A and are accessed via the
IGCPerfromance class of the API (see “IGCPerformance Class” on
page 2-12). For each of the two performance counters, you can separately
determine which VLs you want to monitor for incoming and outgoing
packets.

When reading out the measurement, you obtain the values that
accumulated from the last time you read out the values or started the
performance measurement.

Programming the E2953A/E2954A Link Packet and Protocol Observer

1-8 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Link Packet and Protocol
Observer

The API comes with two classes that allow you to observe link packets
received by the generator:

• IGCProtocolObserver

This class lets you get the status of the protocol observer. See
“IGCProtocolObserver Class” on page 2-13 for details.

• IGCLinkPacketStatus

This class lets you get the status of the link packet itself. See
“IGCLinkPacketStatus Class” on page 2-14 for details.

Both classes just provide “containers” for the information given about the
status of the protocol observer and link packets respectively. Controlling,
that is:

• Starting and stopping the recording of link packet

• Resetting the protocol observer

• Reading out of the results

is performed via new methods in the generator class. Refer to “Methods of
the IGCGenerator Class” on page 2-18 for more information.

 Control Command Language Programming the E2953A/E2954A

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 1-9

Control Command Language

The basis for the control language is the C++ interface.

TCL Interface
The entire functionality of the InfiniBand Generator can also be accessed
via a TCL interface. A part of the software installation is a subnet
management agent (SMA) programmed as a TCL script. The SMA handles
all incoming MAD packets and registers the generator correctly within
the InfiniBand network.

Examples

When you create and use a new class object in TCL it you have to follow
the syntax scheme as described in the following table. It is your
responsibility to write a catch handler to handle any errors that may
occur when a TCL script runs. Failure to do this causes the TCL
interpreter to generate an exception.

 Table 1 Programming Scheme using TCL

What you intend What the SW does Tcl Syntax

Create a new class object in
TCL.

Assigns an object of type
classname to the variable var.

set var [new_<classname> ?parameter?]

Use a class method. Assumes that var contains an
object of type classname.

<classname>_<methodname> $var ?parameters?

Delete an object of type
classname. Equivalent of
calling the destructor.

Assumes that var contains an
object of type classname.

delete_<classname> $var

Set a property to a specific
value. Properties are defined
in the context of the class in
which they are used.

All classes that contain
properties are derived from
IGCObject which implements
the Set() and Get() functions.

IGCObject_Set $var
$<classname>_<propertyname> <value>

Programming the E2953A/E2954A Control Command Language

1-10 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

What you intend What the SW does Tcl Syntax

Get the value of a property. Assumes that val contains the
value and var contains a class
object.

Set val [IGCObject_Get $var
$<classname>_<propname>]

Create a buffer. Makes a new buffer to fill with
packet bytes later on.

set buf [new_IGCBuffer]

Fill the buffer. This appends
the packet to the buffer buf.

Assumes that $pkt contains the
packet and $buf contains the
buffer.

IGCPacket_AppendBuffer $pkt $buf

Pop a few bits out of a
buffer into a tcl variable.

Assumes that $buf contains the
buffer.

set var [IGCBuffer_Pop $buf <lengthinbit>]

Get a few bits out of a buffer
at a certain position

Assumes that $buf contains the
buffer.

set var [IGCBuffer_GetAt $buf <offset>
<lengthinbit>]

Push a few bits into a buffer. Assumes that $buf contains the
buffer.

IGCBuffer_Push $buf <lengthinbits> <value>

Set a few bits into a buffer
at a certain position.

Assumes that $buf contains the
buffer.

IGCBuffer_SetAt $buf <offset>
<lenghtinbits> <value>

Print the status on the
screen.

NOTE: All Print() functions are
mapped into Tcl to return the
printed string. No input
parameter has to be specified!

set stat [new_IGCStatus]

IGCGenerator_UpdateStatus $gen $stat

set str [IGCStatus_Print $stat]

puts "Result: $str"

Packets ready and waiting in a buffer may not contain CRC values!

By using these functions, you can also access the buffer bitwise. The class
IGCBuffer can also be saved to file and restored from file.

NOTE

 Control Command Language Programming the E2953A/E2954A

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 1-11

Installed TCL Sample Scripts
The following tables describes the scripts installed with the
E2953A/E2954A software.

 Table 2 Sample scripts installed with the E2953A/E2954A software

Script name Description

GettingStarted Starts a rudimentary Subnet Management agent.

This script shows how to generate and respond to
incoming SMP packets in TCL

Packetbounce Bounces a packet between two generators

Showprops Show/Update a window showing all props of an
IGCObject instance

Programming the E2953A/E2954A Control Command Language

1-12 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-1

Classes of the C++ Interface

The main programming interface to the E2953A/E2954A is based on the
C++ programming language. Included with the software is also a TCL
representation of the C++ interface - a shell to provide you with the
capabilities of a script language. Thus All C++ calls have a TCL
equivalent.

You therefore have a choice of using either the C++ interface or the TCL
shell to program and configure the E2953A/E2954A InfiniBand
Generator. Both interfaces can be used to integrate the E2953A/E2954A
into test software and test environments.

C++ Interface

The key class within the C++ interface is the class IGCGenerator that
contains the main methods for connecting to an InfiniBand generator.
InfiniBand packets are created using the class IGCPacket and its derived
classes. All classes and their methods are described below.

All classes can be printed using the C++ stream operator (<<) or the
method Print(). Depending on the class, the output is either a textual
representation of the class or a description of the class status (as with the
IGCError class, see “Error Class” on page 2-15). Expressed another way, it
allows you to find out what the data content of a class is.

Classes of the C++ Interface C++ Interface

2-2 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Generator Class
The generator class IGCGenerator is the ‘main’ class needed to connect the
software to a specific generator. There can be only one generator class for
each physical E2953A 1x Generator for InfiniBand or E2954A 4x
Exerciser for InfiniBand. However, you can handle several generator
class objects simultaneously where each of these objects is connected to a
different generator. A generator object can also be created with an offline
connection.

The IGCGenerator class is derived from the class IGCObject which
implements the Set() and Get() functions for the properties (see
“Miscellaneous Classes” on page 2-15).

This is the main class for interfacing the software to the E2953A/E2954A.

For each generator that is connected, you need to have one instance of
this class. The generator class also contains a dispatcher that manages
the flow of received packets to registered packet handlers. For the
methods relating to this class refer to “Methods of the IGCGenerator
Class” on page 2-18.

Packet Classes
There are several packet classes (derived from the general packet class
IGCPacket) that reflect the different basic types of packets that can be
transported via an InfiniBand link. These are the raw packet, the raw
packet with the IPv6 header, the InfiniBand packet and the MAD packet.
The latter is derived from the InfiniBand packet. For the methods relating
to this class refer to “Methods of the IGCPacket Class” on page 2-60.

The IGCPacket class itself is derived from the IGCObject class (see
“Miscellaneous Classes” on page 2-15).

The following figure shows the derivation hierarchy of the Packet classes.
You can derive additional classes from these should the need arise.

IGCGenerator Class

IGCPacket Overview

 C++ Interface Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-3

 Figure 2 Hierarchy of the Packet Classes

I G C S MP P a c k e t

I G C MA D P a c k e t

I G CRawPa c ke t IG C R awI P Pa ck e t I G C I BA P ac ke t

I G C P a ck et

The IGCPacket class is the base class for all classes that hold InfiniBand
architecture packets (InfiniBand packets and raw packets). For the
methods relating to this class, refer to “Methods of the IGCPacket Class”
on page 2-60.

From this class the following classes are derived:

• IGCRawPacket class

Raw packet with raw header. For the methods relating to this class
refer to “Methods of the IGCRawPacket Class” on page 2-69.

• IGCRawIPPacket class

Raw packet with IPv6 header. For the methods relating to this class
refer to “Methods of the IGCRawIPPacket Class” on page 2-72.

IGCPacket Classes

Classes of the C++ Interface C++ Interface

2-4 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

• IGCIBAPacket class

Standard InfiniBand packet. This type of packet can be either local or
global. The local/global parameter applies to packets of type
IGCIBAPacket and IGCMADPacket (and all packets derived from them) and
determines whether a global routing header should be present in the
packet or not (refer to the InfiniBand Specification Section 5.2). For
the methods relating to this class refer to “Methods of the
IGCIBAPacket Class” on page 2-75.

The following class is derived from the IGCIBAPacket class:

– IGCMADPacket class

Special class to hold InfiniBand MAD packets. This class allows
convenient access to all MAD information. For the methods relating
to this class refer to “Methods of the IGCMADPacket Class” on
page 2-79.

 The following class is derived from the IGMADPacket class:

– IGCSMPPacket class

Special class to hold InfiniBand SMP packets. For the methods
relating to this class refer to “Methods of the IGCSMPPacket Class”
on page 2-82.

Packet Handler Classes
The Packet Handler classes consist of the class IGCPacketHandler and the
class IGCPacketHandlerTcl, where the latter is derived from the former.

The class IGCPacketHandlerTcl provides the functionality for handling
TCL scripts. This makes it easy for a TCL script to handle incoming
packets.

There is a simple SMA (subnet management agent) implemented by a TCL
script, which is also part of the software. The script also serves as an
example of how to program in TCL. You can find the script under
“Installed TCL Sample Scripts” on page 1-11.

 C++ Interface Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-5

The following figure shows the derivation hierarchy of the Packet
Handler classes.

 Figure 3 Hierarchy of the Packet Handler Classes

IGCPacketHandler

IGCPacketHandlerTcl

This is an abstract base class. It basically manages two functions, both
implemented as purely virtual methods that check and handle incoming
packets. The methods are CheckPacket() and HandlePacket(). For the
methods relating to this class refer to “Methods of the IGCPacketHandler
Class” on page 2-105.

As a user you are free to derive additional classes from the
IGCPacketHandler class to write your own packet handlers. Using the
IGCPacketHandlerTcl class you can also write an entire packet handler in
TCL.

The following class is derived from IGCPacketHandler:

• IGCPacketHandlerTcl class

This class allows you to provide the generator class with TCL scripts to
handle incoming packets. For the methods relating to this class refer to
“Methods of the IGCPacketHandlerTcl Class” on page 2-108.

IGCPacketHandler Overview

IGCPacketHandler Class

Classes of the C++ Interface C++ Interface

2-6 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

CallBack Classes
The class IGCCallBack provides the methods to handle callbacks from the
API.

You cannot use the class directly, it is purely virtual and has to be
derived. You need to implement method Notify() in your derived class.
The generator uses this method to pass the callback data for handling.
You are free to do whatever is necessary in this method.

The CallBack classes consist of the class IGCCallBack and the class
IGCCallBackTcl, where the latter is derived from the former.

The class IGCCallBackTcl provides the functionality for handling TCL
scripts. This makes it easy for a TCL script to handle callbacks.

The following figure shows the hierarchy of the CallBack classes.

 Figure 4 Hierarchy of the CallBack Classes

IGCCallBack

IGCCallBackTcl

This is an abstract base class. It basically manages two methods: Notify
and SetNotifyMask. These methods are described in “Methods of the
IGCCallBack Class” on page 2-110.

As a user you are free to derive additional classes from the IGCCallBack
class to write your own callbacks.

This class is derived from IGCCallBack. It allows you to provide the
generator class with TCL scripts to handle callback events. For the
methods relating to this class refer to “Methods of the IGCCallBackTcl
Class” on page 2-114.

IGCCallBack Overview

IGCCallBack Class

· IGCCallBackTcl class

 C++ Interface Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-7

Property Value Class
The class IGCVal is designed to take different kinds of property values
into one type of variable. These properties control the behavior of the
generator or the assembly of packets within one of the packet classes. As
with all classes, the class IGCVal can be sent to an output stream using the
C++ stream operator to get a textual representation of the property value

(see “Methods of the IGCGeneratorInfo Class” on page 2-57).

This class can hold different data types (integers, long integers, strings,
boolean and so on) up to 128 bits in length. For the methods relating to
this class refer to “Methods of the IGCVal Class” on page 2-93.

MAD Attribute Classes
The InfiniBand Specification describes several attributes that can be
carried by MAD packets. The attributes are realized as sub classes of the
class IGCMADAttribute.

To create a MAD packet that contains one of the above attributes:

1 Create an instance of the desired attribute class.

2 Modify its properties.

3 Copy the data into the instance of a MAD Packet using the method
ToPacket() of the class IGCMADAttribute.

4 Use the method FromPacket() from the class IGCMADAttribute to extract
the attribute data of a MAD Packet.

“Example of Script Using MAD Attribute Classes” on page 2-9 shows an
example of script using the PortInfo attribute.

IGCVal Class

Classes of the C++ Interface C++ Interface

2-8 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

 Table 3 Correspondence between Attributes classes and InfiniBand Specification

MAD Attribute Class InfiniBand Attribute Section of the InfiniBand
specification

IGCSubnMgmtAttribute Subnet Management
attribute

14.2 Subnet Management
Class

IGCPerfMgtAttribute Performance Management
attribute

16.1 Performance
Management

IGCDTAAttribute Device Test Agent attribute 16.3 Device Management

IGCDCommMgtAttribute Communication
Management attribute

16.7 Communication
Management

IGCMADAttrNotice Notice attribute 13.4.8 Management Class
Attributes

IGCMADAttrInformInfo InformInfo attribute 13.4.8 Management Class
Attributes

IGCMADAttrClassPortInfo ClassPortInfo attribute 13.4.8 Management Class
Attributes

 C++ Interface Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-9

Example of Script Using MAD Attribute Classes

The following TCL script shows how to create a MAD packet containing
the PortInfo attribute:

Creation of SMP packet with attribute PortInfo
Create object of the attribute PortInfo
set attr
[IGCSubnMgmtAttribute_NewAttr$::IGCSubnMgmtAttribute_PortInfo]
Create packet object
set smp [new_IGCSMPacket]
Example: set a value of the attribute PortInfo
IGCObject_Set $attr $::IGCPortInfo_LID 0x1234
Set attribute ID of packet to PortInfo
IGCObject_Set $smp
$::IGCMADPacket_MAD_AttributeID$::IGCSubnMgmtAttribute_PortInfo
Copy attribute values into the smp packet
IGCMADAttribute_ToPacket $attr $smp
set id [IGCObject_Get $smp $::IGCMADPacket_MAD_AttributeID]
Create attribute
set attr [IGCSubnMgmtAttribute_NewAttr $id]
Copy attribute values into object
IGCMADAttribute_FromPacket $attr $smp

Classes of the C++ Interface C++ Interface

2-10 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Subnet Management Attribute Classes
The Subnet Management Attributes are described by corresponding
generator classes.

 Table 4 Description of the Subnet Management Attributes through generator classes

Subnet Management Attribute Class

NodeDescription IGCNodeDescription

NodeInfo IGCNodeInfo

SwitchInfo IGCSwitchInfo

GUIDInfo IGCGUIDInfo

PortInfo IGCPortInfo

LinearForwardingTable IGCLinearForwardingTable

All these classes are derived from the IGCObject class which implements
the Set() and Get() methods for the properties (see “Miscellaneous
Classes” on page 2-15).

Some of the properties for the structs are read/write, others are read
only. For instance, you can copy a NodeInfo struct to the generator
NodeInfo struct by using::

• The assignment operator

Only the read/write properties will be copied.

• The CopyProps() of IGCObject

In this case, you can specify to copy read-only properties.

 C++ Interface Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-11

 Figure 5 Data Classes

IGCNodeInfo IGCPortInfo IGCGUIDInfo IGCNodeDescription IGCLinearForwardingTable

This class holds the properties for the InfiniBand NodeInfo struct. Each
generator class has one NodeInfo class object. For the properties refer to
“IGCNodeInfo Properties” on page 4-6.

This class holds the properties for the InfiniBand PortInfo struct. Each
generator class has one PortInfo class object. For the properties refer to
“IGCPortInfo Properties” on page 4-8.

This class holds the properties for the InfiniBand GUIDInfo struct. Each
generator class has one GUIDInfo class object. For the properties refer to
“IGCGUIDInfo Properties” on page 4-7.

This class holds the properties for the InfiniBand NodeDescription struct.
Each generator class has one NodeDescription class object. For the
properties refer to “IGCNodeDescription Properties” on page 4-7.

This class holds the properties for the InfiniBand SwitchInfo struct. Each
generator class has one SwitchInfo class object. For the properties refer to
the InfiniBand specification.

This class holds the properties for the InfiniBand LinearForwardingTable
struct. Each generator class has one LinearForwardingTable class object.
For the properties, refer to the InfiniBand specification.

IGCNodeInfo Class

IGCPortInfo Class

IGCGUIDInfo Class

IGCNodeDescription Class

IGCSwitchInfo Class

IGCLinearForwarding Table Class

Classes of the C++ Interface C++ Interface

2-12 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

IGCPerformance Class
The class IGCPerformance is derived from IGCObject and represents a
container for the result of the performance measurement that is
controlled via methods in the generator class. Refer to “Performance
Measurement” on page 1-7 for more information.

The class IGCPerformance contains the following properties:

 Table 5 Properties of the IGCPerformance Class

Property Name Range Default Access Description

RefClk 64bit 0 RW Time in 16ns since last
Measurement

RcvePyldHdr 64bit 0 RW Received DWORDs from LRH to
End of Payload, followed by
EGP

RcvePyld 64bit 0 RW Received DWORDs from Start
of Payload to End of Payload,
followed by EGP

RcvePkt 64bit 0 RW Number of Received Packets
followed by EGP

RcvePktBad 64bit 0 RW Number of Received Packets
followed by EBP

RcvePktLink 64bit 0 RW Number of Received Link
Packets on all VL

XmitPyldHdr 64bit 0 RW Transmitted DWORDs from LRH
to End of Payload, followed by
EGP

XmitPyld 64bit 0 RW Transmitted DWORDs from
Start of Payload to End of
Payload, followed by EGP

XmitPkt 64bit 0 RW Number of Transmitted Packets
followed by EGP

 C++ Interface Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-13

Property Name Range Default Access Description

XmitPktBad 64bit 0 RW Number of Transmitted Packets
followed by EBP

XmitPktLink 64bit 0 RW Number of Transmitted Link
Packets on all VL

IGCProtocolObserver Class
The protocol observer contains data related to the InfiniBand protocol.
Refer to “Link Packet and Protocol Observer” on page 1-8 for details.

The class IGCProtocolObserver is derived from IGCObject and represents a
container for the result of the protocol observer that is controlled via
methods in the generator class. It contains the following properties:

 Table 6 Properties of the IGCProtocolObserver class

Property Name Range Default Access Description

LinkPacket_Timeout_Exceeded 16bit 0 RW Each bit represents a VL.
The Least Significant Bit
is VL0.
The Most Significant Bit
is VL15.
A ‘1’ indicates that the
timeout for the link
packet was exceeded.
The timeout for link
packets is 65536 symbol
time, with each symbol
time unit being 4ns.

Classes of the C++ Interface C++ Interface

2-14 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

IGCLinkPacketStatus Class
The class IGCLinkPacketStatus is derived from IGCObject and represents a
container for the result of the link packet observer that is controlled via
methods in the generator class. It contains the following properties:

 Table 7 Properties of the IGCLinkPacketStatus class

Property Name Range Default Access Description

All_Normal_Packets 16bit 0 RW The Least Significant Bit represents
VL0, the Most Significant Bit
represents VL15.
A ‘1’ indicates that a normal link
packet was received.
A ‘0’ that no normal link packet
was received.

All_Init_Packets 16bit 0 RW The Least Significant Bit represents
VL0, the Most Significant Bit
represents VL15.
A ‘1’ indicates that an init link
packet was received.
A ‘0’ that no init link packet was
received.

Received_Op 4bit 0 RW ‘Op’-field in Flow Control Packet of
the captured link packet.

Received_FCTBS 12bit 0 RW ‘FCTBS’-field in Flow Control
Packet of the captured link packet.

Received_VL 4bit 0 RW ‘VL’-field in Flow Control Packet of
the captured link packet.

Received_FCCL 12bit 0 RW ‘FCCL’-field in Flow Control Packet
of the captured link packet.

Received_LPCRC 16bit 0 RW ‘LPCRC’-field in Flow Control
Packet of the captured link packet.

 C++ Interface Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-15

Error Class
Error handling in the C++ as well as in the TCL interface is based on C++
exception handling. Errors are of the type IGCError.

This class handles errors and gets thrown if an error occurs. Error
handling takes place via exception handling (try and catch). You are
responsible for catching potential errors. For the methods relating to this
class refer to “Methods of the IGCPacketHandler Class” on page 2-105.

Miscellaneous Classes
This group consists of the classes IGCGeneratorList, IGCGeneratorInfo,
IGCObject, IGCBuffer and IGCStatus.

This class does an automatic USB scan and creates a list of all connected
generators. For the methods relating to this class refer to “Methods of the
IGCGeneratorList Class” on page 2-53.

This class contains a set of ‘static’ information. Every generator provides
this information in the form of a serial number or the USB port with
which it is connected (see “Methods of the IGCGeneratorInfo Class” on
page 2-57).

This class is purely virtual and is the base class for most user-accessible
classes. It implements the functions Set() and Get() necessary for
property control. For the methods relating to this class refer to “Methods
of the IGCObject Class” on page 2-100.

This class holds a buffer, for instance, for the data payload or provides
space to store an unparsed packet. For the methods relating to this class
refer to “Methods of the IGCBuffer Class” on page 2-85.

This class contains the entire status information available from one
E2953A/E2954A Generator. For the methods relating to this class refer to
“Methods of the IGCStatus Class” on page 2-103.

IGCError Class

IGCGeneratorList Class

IGCGeneratorInfo Class

IGCObject Class

IGCBuffer Class

IGCStatus Class

Classes of the C++ Interface Methods Common to All Classes

2-16 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Methods Common to All Classes

Every class (or its base class) has the method Print() and supports the
C++ stream operator for the user to be able to print the content of the
class. The content can be either debug information or status information.

Print

ostream & Print (ostream & o) const;

Prints the content of the class as text representation of the specified
ostream (in a form readable by humans). While this method is common to
all classes, it is additionally mentioned in the classes IGCGeneratorInfo,
IGCGeneratorStatus and Error. In these classes it is used to deliver the
content of the internal variables of the particular class (for instance for
the purpose of debugging while using TCL).

Returns a reference to an ostream object with the content of the class.

o
The stream to print into. This provides you with the possibility to print to a
file or to stdout.

None

Call

Description

Return Value

Input Parameters

See also

 Methods Common to All Classes Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-17

Operator <<

ostream & operator << (ostream & o, const <classname> & <var>);

Similar to print but uses the C++ streaming operator.

Returns a reference to an ostream object with the content of the class.

o
The specified ostream.

var
The class, the content of which is to be printed.

None

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-18 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Methods of the IGCGenerator
Class

There can only be one IGCGenerator class for each physical
E2953A/E2954A. The generator class also holds information on the
InfiniBand port info struct and all associated data. Since there can only
be one generator per real device the copy constructor leads to an
assertion.

IN, OUT and INOUT are markers that determine the parameter type (input or
output).

The following table lists all characteristic members of the IGCGenerator
class:

void AssertTriggerOut (void);

void Connect (IN ig_int32 index);

void Disconnect (void);

void EnableMADHandling (IN ig_bool bEnable = true);

const
IGCGeneratorI
nfo &

GetInfo (void) const;

IGCSubnMgmtAt
tribute &

GetSubnMgmtAttribute (ig_int16 attr);

void HardwareUpdate(IN ig_int32 port, IN ig_bool force = false);

void IBLinkReset (void);

ig_bool IsConnected(void) const;

ig_bool IsMADHandling(void) const;

 IGCGenerator (void);

 ~IGCGenerator (void);

ig_int8 LaneSkewGet(IN ig_int8 lane);

void LaneSkewSet(IN ig_int8 lane, IN ig_int8 val);

void LinkPacketRecRun(IN ig_int8 VL = 0x0);

void LinkPacketRecStop();

Characteristic Members

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-19

void LinkPacketStatusRead(OUT IGCLinkPacketStatus &status);

void LinkStateWrite (IN ig_int8 linkstate);

void LinkTrainingStateWrite (IN ig_int8 linkstate);

ig_int16 OperationalVLRead (void);

void OperationalVLWrite (IN ig_int16 allVLState);

ig_int16 PerformanceCtrMaskRead(IN ig_bool direction, IN ig_int8 ctrNum);

void PerformanceCtrMaskWrite(IN ig_bool direction, IN ig_int8 ctrNum, IN
ig_int16 ctrMask);

void PerformanceRead(OUT IGCPerformance &performance, IN ig_int8 ctrNum);

void PerformanceStart();

void PerformanceStop();

void PacketInit (IN IGCPacket & packet);

void PacketSend (IGCPacket & packet);

void PatternActionWrite (IN ig_int8 pattern, IN ig_int8 action);

void PatternMaskWrite (IN ig_int8 pattern, IN const IGCVal & mask);

void PatternOffsetWrite (IN ig_int8 pattern, IN ig_int32 offset);

void PatternValueWrite (IN ig_int8 pattern, IN const IGCVal & value);

void Ping (void);

void ProtocolObserverRead(OUT IGCProtocolObserver &status);

void ProtocolObserverReset();

void RegisterCallBack (IN CBTypes cbType, IN IGCCallBack & pCB, IN ig_bool
atEnd = true);

void UnregisterCallBack (IN CBTypes cbType, IN IGCCallBack & pCB);

void RegisterPacketHandler (IN IGCPacketHandler & handler, IN ig_bool at End =
true);

void Reset (void);

void ResetPacketSend (void);

void SkipTestRun (IN ig_int8 count = 0xFF, IN IGESkipMode mode = SKIP_SAME);

void StatusRead (IN IGCStatus & status) const;

void TransmitInit (void);

void TransmitProg (void);

void TransmitRun (void);

void TransmitSet (IN const IGCPacket & packet);

void TransmitStep (void);

void TransmitStop (void);

Classes of the C++ Interface Methods of the IGCGenerator Class

2-20 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

void UnregisterPacketHandler (IN IGCPacketHandler & handler);

ig_int32 VLAllResourceRead (void);

void VLAllResourceWrite (IN ig_int32 regVal);

ig_int8 VLResourceRead (IN ig_int8 VL);

void VLResourceWrite (IN ig_int8 VL, IN ig_int8 resource);

ig_int8 VLStateRead (IN ig_int8 VL);

void VLStateWrite (IN ig_int8 VL, IN ig_int8 state);

The following table lists the inherited members of the IGCGenerator class
(see also “Methods of the IGCObject Class” on page 2-100):

void Set (IN ig_int32 prop, IN const IGCVal & val);

IGCVal Get (IN ig_int32 prop);

virtual void Default (void);

virtual void CopyProps (IN const IGCObject & other, IN ig_bool rwOnly);

#include <iggenerator.h>

Inherited Members

Include Files

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-21

AssertTriggerOut

void AssertTriggerOut (void);

Manually asserts the trigger out signal.

None

None

None

Connect

void Connect (IN ig_int32 portNum);

Connects the generator class to the physical generator at the USB port
number portNum. This is the number returned by GetPort() (see “Methods
of the IGCGeneratorInfo Class” on page 2-57). If the E2953A/E2954A to
be connected is already in use by another generator class object, this call
results in an error.

None

portNum
USB port number returned by GetPort().

Disconnect

Description

Return Value

Parameters

See also

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-22 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Disconnect

void Disconnect (void);

Disconnects the class from the physical generator. Without an active
connection all calls directly accessing the generator result in an error.

None

None

Connect above

EnableMADHandling

void EnableMADHandling (IN ig_bool bEnable = true);

This call enables or disables MAD handling. Internally, the call registers
an MAD packet handler and starts it.

None

bEnable
Enables or disables MAD handling. Takes the values true or false.

None

Description

Return Value

Input Parameters

See also

Description

Return Value

Input Parameters

See also

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-23

GetInfo

const IGCGeneratorInfo & GetInfo (void) const;

Returns a reference to an IGCGeneratorInfo object which contains
information about the generator itself (USB port number, serial number,
revision number, and so on).

A reference to the appropriate IGCGeneratorInfo object.

None

None

GetSubnMgmtAttribute

IGCSubnMgmtAttribute & GetSubnMgmtAttribute (ig_int16 attr);

Get subnet management attribute of the generator

A reference to the appropriate IGCSubnMgmtAttribute object.

attr

Attribute ID:

• NodeDescription

• NodeInfo

• SwitchInfo

• GUIDInfo

• PortInfo

• LinearForwardingTable

“MAD Attribute Classes” on page 2-7 and “Example of Script Using MAD
Attribute Classes” on page 2-9

Description

Return Value

Input Parameters

See also

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-24 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

HardwareUpdate

void HardwareUpdate(IN ig_int32 port, IN ig_bool force = false);

Updates the hardware. The versions of the firmware and FPGA on the
exerciser are compared to the versions required by the current IGAPI and
updated if needed. If the files containing the data of the firmware and
FPGA are not found in the current directory, HardwareUpdate searches in
the path <InstallDir>\HW.

None

port
Current USB port

force
Force update, even if versions match

 None

IBLinkReset

void IBLinkReset (void);

Resets the link and initializes new training sequences and new link
training. The settings and property values of the generator itself are not
reset nor changed.

None

None

None

Description

Return Value

Input Parameters

See also

Description

Return Value

Input Parameters

See also

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-25

IsMADHandling

ig_bool IsMADHandling(void) const;

Returns whether MAD handling is running.

1 if handling is running,.
0 if not.

None

None

IsConnected

ig_bool IsConnected(void) const;

Checks whether the generator is connected to a physical generator at the
USB port.

0: Offline
1: A generator is connected

None

“Connect” on page 2-21

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-26 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

IGCGenerator, Constructor

IGCGenerator (void);

Constructor.

Without a call to the method Connect() the generator class is not able to
process any direct accesses to hardware. By default, the generator is
started in offline mode.

None

None

IGCGenerator Destructor

~IGCGenerator, Destructor

~IGCGenerator (void);

Destructor.

If a connection is active, it is closed automatically.

None

None

IGCGenerator Constructor

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-27

LaneSkewGet

ig_int8 LaneSkewGet(IN ig_int8 lane);

Gets the skew of a lane of the transmitting side.

This method is not available for the E2953A.

Lane skew in Symbol Times (4ns)

Lane

The values taken by lane correspond to:

• LANE_A

• LANE_B

• LANE_C

• LANE_D

LaneSkewSet
LaneSkew property of the class IGCStatus

Call

Description

NOTE

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-28 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

LaneSkewSet

void LaneSkewSet(IN ig_int8 lane, IN ig_int8 val);

Sets the skew of a lane for the transmitter. By setting the delays for the
four lanes to different values a lane to lane skew can be generated. This
register can be written anytime even during link up state but the link is
likely to go down afterwards and a retraining is typically performed.

This method is not available for the E2953A.

None

lane:

The values taken by lane correspond to:

• LANE_A

• LANE_B

• LANE_C

• LANE_D

val

Lane skew in Symbol Times (4ns for IBx1 and IBx4). The minimum value
is 0, the maximum value is 9.

LaneSkewGet
LaneSkew property of the class IGCStatus

Call

Description

NOTE

Return Value

Input Parameters

See also

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-29

LinkPacketRecRun

void LinkPacketRecRun(IN ig_int8 VL = 0x0);

Starts monitoring link packets received by the generator. All virtual lanes
are monitored for occurring Normal Link Packets and Init Link Packets.
For the virtual lane set in the parameter VL the first occurring link packet
will be captured.

None

VL
The first link packet on the virual lane will be captured.

LinkPacketRecStop, LinkPacketStatusRead

LinkPacketRecStop

void LinkPacketRecStop();

Stops monitoring link packets received by the generator.

None

None

LinkPacketRecRun, LinkPacketStatusRead

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-30 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

LinkStateWrite

void LinkStateWrite (IN ig_int8 linkstate);

Sets the link state machine into one of the states listed in Input
Parameters. This is normally performed by the Subnet Management
software but if this is not present in the InfiniBand network you may
need to do it manually.

None

linkstate

The values taken by linkstate are:

• LINKCMD_DOWN

The link state machine is down.

• LINKCMD_ARM

The link state machine is armed.

• LINKCMD_ACTIVE
 The link state machine is active.

None

LinkPacketStatusRead

void LinkPacketStatusRead(OUT IGCLinkPacketStatus &status);

Reads out the result when monitoring link packets using LinkPacketRecRun
and LinkPacketRecStop.

None

Instance of IGCLinkPacketStatus where result will be stored

LinkPacketRecRun, LinkPacketRecStop

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-31

LinkTrainingStateWrite

void LinkTrainingStateWrite (IN ig_int8 linkstate);

You have to call this function to change the state of the link training state
machine from disabled to sleep. Without this call the generator cannot
begin establishing an InfiniBand link.

None

linkstate

The values taken by linkstate are:

• LINKTRAINCMD_DISABLED

The link training state machine is disabled.

• LINKTRAINCMD_SLEEP

The link training state machine is inactive (sleeps).

• LINKTRAINCMD_POLL

The link training state machine is polling.

• LINKTRAINCMD_INITIATEERRORRECOVERY

The link training state machine is in recovery

“Reset” on page 2-43

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-32 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

OperationalVLRead

ig_int16 OperationalVLRead (void);

Reads out the virtual lanes enabled on the E2953A/E2954A.

Each bit of the return value represents the enable bit of the
corresponding virtual lane. Bit0 holds the enable bit for VL0 and so forth.
Set to 1 the virtual lane is enabled.

None

None

OperationalVLWrite

void OperationalVLWrite (IN ig_int16 allVLState);

Enables the virtual lanes on the E2953A/E2954A.

None

Each bit of the return value represents the enable bit of the
corresponding VL. Bit0 holds the enable bit for VL0 and so forth. Set to 1
the virtual lane is enabled.

None

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-33

PacketInit

void PacketInit (IN IGCPacket & packet);

This method initializes a packet with all the global properties available to
the generator (source lid, source gid, and so on). If you do not use this
method, you must set the packet header information by some other
means. Note, that the generator is capable of sending out uninitialized
packets, but such packets do not conform to the InfiniBand specification.

None

packet
The packet to be initialized.

None

PacketSend

void PacketSend (IGCPacket & packet);

Send a packet directly out of the IB link. This method bypasses the
transmit memory. Its purpose is to allow you to send high priority
packets or MAD packets at any time without the need for extensive
memory programming.

None

packet
The packet to be sent.

“ResetPacketSend” on page 2-44

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-34 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

PatternActionWrite

void PatternActionWrite (IN ig_int8 pattern, IN ig_int8 action);

Determines which pattern matcher will be used to match the incoming
pattern and the action that will take place when a pattern match occurs
(refer to the Agilent Technologies E2950 Series InfiniBand Exerciser
User Guide for more information about the pattern matcher).

None

pattern

Selects the pattern matcher that will be used to check for pattern ‘hits’.
Values taken by pattern can be:

• PATTERN_GENERIC

The Generic pattern matcher will be used.

• PATTERN_BUFFER

The MAD Buffer pattern matcher will be used.

• PATTERN_LOWERMEMORY

The Low Receive Pattern Memory pattern matcher will be used.

• PATTERN_UPPERMEMORY

The High Receive Pattern Memory pattern matcher will be used.

action

The action assigned to the selected pattern matcher. Values taken by
action can be:

• ACTION_NONE

This is defined to 0. No action follows.

• ACTION_TRIGGEROUT

Asserts the external trigger-out line for all packets for which the
extracted bits match the set value.

Call

Description

Return Value

Input Parameters

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-35

• ACTION_STEPSTROBE

Launches a step register strobe for all packets for which the extracted
bits match the set value.

• ACTION_DISCARDNOHIT

When set to 1, discards all incoming packets for which the extracted
bits do not match the set value.

The default for packets is pass-through.

• ACTION_NEGATEPATTERN

This negates the pattern that determines the pattern match .

You can select any combination of these actions using OR.

“PatternMaskWrite” below, “PatternOffsetWrite” on page 2-36and
“PatternValueWrite” on page 2-37

PatternMaskWrite

void PatternMaskWrite (IN ig_int8 pattern, IN const IGCVal & mask);

Writes the pattern mask in the selected pattern matcher. Pattern
matching will take place only on bits where the mask contains a 1.

None

pattern

Selects the pattern matcher where the mask is to be written. Values
taken by pattern can be:

• PATTERN_GENERIC

The mask in the Generic pattern matcher is written.

• PATTERN_BUFFER

The mask in the MAD Buffer pattern matcher is written.

• PATTERN_LOWERMEMORY

The Low Receive Pattern Memory pattern matcher is written.

PATTERN_UPPERMEMORY

The mask in the High Receive Pattern Memory pattern matcher is
written.

See also

Call

Description

Return Value

Input Parameters

Classes of the C++ Interface Methods of the IGCGenerator Class

2-36 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

mask

The pattern will be checked only on the bits where the mask contains a 1.

“PatternActionWrite” on page 2-34, “PatternOffsetWrite” below and
“PatternValueWrite” on page 2-37.

PatternOffsetWrite

void PatternOffsetWrite (IN ig_int8 pattern, IN ig_int32 offset);

Defines the offset within a packet where the pattern is applied. The 64 bit
wide pattern compares with the content of the data packet at the position
determined by 'offset' as shown in the following figure:

 Figure 6 Defining the Offset for Pattern Comparison

InfiniBand Packet

64 bit-wide pattern

Offset

Start of
Data
Pattern

None

pattern

Selects the pattern matcher for which the offset is to be defined. Values
taken by pattern can be:

• PATTERN_GENERIC

The offset for the Generic pattern matcher is to be defined.

• PATTERN_BUFFER

The offset for the MAD Buffer pattern matcher is to be defined.

• PATTERN_LOWERMEMORY

The offset for the Low Receive Pattern Memory pattern matcher is to
be defined.

See also

Call

Description

Return Value

Input Parameters

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-37

• PATTERN_UPPERMEMORY

The offset for the High Receive Pattern Memory pattern matcher is to
be defined.

offset
The offset value has to be DWORD aligned.

“PatternActionWrite” on page 2-34, “PatternMaskWrite” on page 2-35
and “PatternValueWrite” below.

PatternValueWrite

void PatternValueWrite (IN ig_int8 pattern, IN const IGCVal & value);

Writes a 64-bit comparison pattern into the value register of the selected
pattern matcher. The incoming patterns will be compared against this
pattern value, but only on those bits where the mask has been set to 1
(refer to “PatternMaskWrite” on page 2-35).

None

pattern

Selects the pattern matcher where the pattern value is to be written.
Values taken by pattern can be:

• PATTERN_GENERIC

The pattern value will be written into the Generic pattern matcher.

• PATTERN_BUFFER

The pattern value will be written into the MAD Buffer pattern matcher.

• PATTERN_LOWERMEMORY

The pattern value will be written into the Low Receive Pattern Memory
pattern matcher.

• PATTERN_UPPERMEMORY

The pattern value will be written into the High Receive Pattern Memory
pattern matcher.

See also

Call

Description

Return Value

Input Parameters

Classes of the C++ Interface Methods of the IGCGenerator Class

2-38 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

value

A 64-bit value to compare against. The value should “match” the binary
mask as set by PatternMaskWrite. Remember, the pattern matchers will
perform a comparison only on the bits where the mask has been set to 1.

“PatternActionWrite” on page 2-34, “PatternMaskWrite” on page 2-35
and “PatternOffsetWrite” on page 2-36

PerformanceCtrMaskRead

ig_int16 PerformanceCtrMaskRead(IN ig_bool direction,

IN ig_int8 ctrNum);

Reads out the virtual lanes monitored by a performance counter. The
performance measurement must not be running when this command is
executed.

The mask is returned. The Least Significant Bit represents VL0 and the
Most Significant Bit represents VL15. If a bit is set to ‘1’, the packets on
the virtual lane are included in the count.

direction

Indicates if this is the mask for virtual lanes for the outgoing (Xmit)or
incoming packets (Rcve).

ctrNum

Counter number (PerfCtr1 or PerfCtr2)

PerformanceCtrMaskWrite

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-39

PerformanceCtrMaskWrite

void PerformanceCtrMaskWrite(IN ig_bool direction,

IN ig_int8 ctrNum,

IN ig_int16 ctrMask);

Writes the mask corresponding to the virtual lanes monitored by a
performance counter. The performance measurement must not be
running when this command is executed.

None

direction

Indicates if this is the mask for VLs for the outgoing (Xmit) or incoming
(Rcve) packets.

ctrNum

Counter number (PerfCtr1 or PerfCtr2)

ctrMask

The Least Significant Bit represents VL0 and the Most Significant Bit
represents VL15. If a bit is set to 1, the packets on the virtual lane are
included in the count.

PerformanceCtrMaskRead

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-40 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

PerformanceRead

void PerformanceRead(OUT IGCPerformance &performance,

IN ig_int8 ctrNum);

Reads out the values of the performance measurement.

None

performance

Reference to IGCPerformance object, into which the result will be copied.

ctrNum

Counter number of the desired counter
rf

PerformanceStart, PerformanceStop

PerformanceStart

void PerformanceStart();

Starts the performance measurement.

None

None

PerformanceStop

PerformanceStop

void PerformanceStop();

Stops the performance measurement.

None

None

PerformanceStart

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-41

Ping

void Ping (void);

The Error LED on the connected generator starts to flash.

None

None

None

ProtocolObserverRead

void ProtocolObserverRead(OUT IGCProtocolObserver &status);

Reads out the protocol observer status from the generator.

None

status
Reference to IGCProtocolObserver object into which the result will be
copied.

ProtocolObserverReset

ProtocolObserverReset

void ProtocolObserverReset();

Resets the protocol observer values

None

None

ProtocolObserverReset

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-42 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

RegisterCallBack

void RegisterCallBack (IN CBTypes cbType,

IN IGCCallBack & pCB,

IN ig_bool atEnd = true);

Registers a call back.

None
c

cbType

Call back Type corresponding to:

- CB_STATUS

- CB_PROGRESS

- CB_PACKETSEND

pCB

Reference to CallBack object. It must be derived from the class
IGCCallBack.

atEnd

Position in callback queue:

• true : the call back will be positioned at the end of the call back queue

• false: the call back will be positioned at the beginning to the call back
queue

“UnregisterCallBack” on page 2-48

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-43

RegisterPacketHandler

void RegisterPacketHandler (IN IGCPacketHandler & handler);

Registers a packet handler with the generator. All registered packet
handlers are served on the “first come (first registered) – first served”
basis.

None

handler

The packet handler that is to be registered.

atEnd

Position the handler is inserted in the handler queue.

“UnregisterPacketHandler” on page 2-49

Reset

void Reset (void);

Resets the generator. In order to establish the InfiniBand link again, you
have to call either IBLinkReset() or
LinkTrainingStateWrite(LINKTRAINCMD_POLL).

Reset does not delete the contents of the transmit memory.

None

None

“IBLinkReset” on page 2-24 and “LinkTrainingStateWrite” on page 2-31

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-44 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

ResetPacketSend

void ResetPacketSend (void);

Deletes the send buffer. You can use this method when a packet cannot be
sent out (the link is down or the cable is disconnected) and you wish to
discard the packet rather than waiting that it is sent out.

None

None

“PacketSend” on page 2-33

SkipTestRun

void SkipTestRun (IN ig_int8 count = 0xFF, IN IGESkipMode mode =

SKIP_SAME);

As specified in the InfiniBand specification, the E2953A/E2954A inserts
by default skip ordered sets (i.e. the sequence of a COMMA symbol
followed by three SKIP symbols) that are used by the DUT to calculate the
lane skew.
In addition, you can insert a special SKIP ordered set that simulates a
repeater using the SkipTestRun method. In this ordered set, SKIP symbols
are omitted and replaced by IDLE symbols.

None

count
Number of special skip insertions

mode

mode can have following values:

• SKIP_SAME (keep previous set value)

• SKIP_1 (DWORD that is inserted looks like this IDLE COM SKP SKP)

• SKIP_2 (DWORD that is inserted looks like this IDLE IDLE COM SKP)

• SKIP_3 (DWORD that is inserted looks like this COM SKP SKP SKP)

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-45

StatusRead

void StatusRead (IN IGCStatus & status) const;

Supplies the specified IGCStatus class with the latest status information.
The status is a snapshot of the current hardware state.

None

status

Hardware status information. The input is a reference to an object of type
status that you need to create. The generator then fills the status object
with all the relevant data. For detailed information refer to “Status
Properties” on page 4-3.

None

TransmitInit

void TransmitInit (void);

Initializes the transmit memory programming array. The call has to be
made before filling the memory.

None

None

None

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-46 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

TransmitProg

void TransmitProg (void);

Programs the generator memory with the data contained in the transmit
memory buffer.

None

None

None

TransmitRun

void TransmitRun (void);

Starts sending packets out of the transmit memory.

None

None

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-47

TransmitSet

void TransmitSet (IN const IGCPacket & packet);

Programs a packet into the transmit memory buffer.

None

packet

Contents of the packet to be programmed into the transmit memory
buffer.

None

TransmitStep

void TransmitStep (void);

Functions as continue if you have selected a certain packet to wait for a
software strobe. It causes a packet that is currently waiting in line in the
transmit memory to be sent out onto the InfiniBand link. The transmit
memory then runs until it reaches the next packet that has been set on
hold with the wait for step property.

If you have set up a lot of packets in the transmit memory which you
intend to send out in response to a received packet of some kind or in
response to some other software controlled event, you can specify in the
packet properties (see “Packet Properties” on page 4-11) that a certain
packet should wait for a step signal (IGP_WaitStep). This can be invoked
either by one of the pattern terms or by a manual software call to
TransmitStep().

None

None

None

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-48 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

TransmitStop

void TransmitStop (void);

Stops sending out packets from the transmit memory.

None

None

None

UnregisterCallBack

void UnregisterCallBack (IN CBTypes cbType,

IN IGCCallBack & pCB);

Unregisters a callback

None

cbType

Type of callback:

- CB_STATUS

- CB_PROGRESS

- CB_PACKETSEND

pCB

Callback class. It must be derived from the class IGCCallBack.

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-49

UnregisterPacketHandler

void UnregisterPacketHandler (IN IGCPacketHandler & handler);

Deletes a packet handler registration. Note that if the object
IGCPacketHandler gets deleted or gets out of scope, it is automatically
unregistered (the software calls the destructor of the object).

None

handler
The packet handler to be unregistered.

“RegisterPacketHandler” on page 2-43

VLAllResourceRead

ig_int32 VLAllResourceRead (void);

Reads out in which resource packets received on the VLs will be stored.

This register holds the two-bit resource information per virtual lane:

• 00 Infinite sink

• 01 Receive Buffer

• 10 Lower Memory

• 11 Upper Memory

The bits 1 and 0 hold the resource information for VL0 and the bits 3 and
2 for VL1 and so forth.

None

VLAllResourceWrite

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-50 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

VLAllResourceWrite

void VLAllResourceWrite (IN ig_int32 regVal);

Writes in which part of the receive memory (resource) packets received
on the VLs will be stored.

None

regVal
This register holds the two bit resource information per virtual lane.

• 00 Generic (Infinite sink)

• 01 Receive Buffer

• 10 Lower Memory

• 11 Upper Memory

The bits 1 and 0 hold the resource information for VL0 and the bits 3 and
2 for VL1 and so forth.

VLAllResourceRead

VLResourceRead

ig_int8 VLResourceRead (IN ig_int8 VL);

Reads back the resource for the specified VL.

The read resource for the virtual lane. For resource values, refer to
VLResourceWrite below.

VL
The virtual lane to be interrogated.

VLResourceWrite below

Call

Description

Return Values

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCGenerator Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-51

VLResourceWrite

void VLResourceWrite (IN ig_int8 VL, IN ig_int8 resource);

Defines the resource for each of the enabled VLs.

None

VL
The virtual lane for which a resource is to be assigned.

resource
The following resources can be assigned:

• VLRES_BUFFER

Assigns the receive buffer

• VLRES_UPPERMEMORY

Assigns the upper half of the receive memory

• VLRES_LOWERMEMORY

Assigns the lower half of the receive memory

• VLRES_DISCARD

Enables a virtual lane but discards all incoming packets. This causes
the E2953A/E2954A to act as data sink with unlimited receive
memory.

VLResourceRead above

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCGenerator Class

2-52 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

VLStateRead

ig_int8 VLStateRead (IN ig_int8 VL);

Reads the current state of the virtual lane (VL). Responses are 0 for
disabled and 1 for enabled.

Current state of the virtual lane. For states and return values refer to
VLStateWrite below.

VL
The virtual lane to be interrogated.

VLStateWrite below

VLStateWrite

void VLStateWrite (IN ig_int8 VL, IN ig_int8 state);

Writes the state of the virtual lane into the hardware.

None

VL
The virtual lane to be set.

state

• VLSTATE_OFF

The virtual lane is disabled.

• VLSTATE_ON

The virtual lane is enabled. Disabling a virtual lane means that no
credits are given out for this virtual lane.

VLStateRead above

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCGeneratorList Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-53

Methods of the IGCGeneratorList
Class

This class creates a list of all connected generators. When the class is
created it scans the entire USB bus for all connected E2953A/E2954A
InfiniBand generators.

The following table lists all characteristic members of the
IGCGeneratorList class:

 IGCGeneratorList (void);

~IGCGeneratorList (void);

int Count (void) const;

const IGCGeneratorInfo & Get (IN int index) const;

const IGCGeneratorInfo & operator[] (IN int index) const;

void Rescan (void);

#include <iggeneratorlist.h>

IGCGeneratorList, Constructor
IGCGeneratorList (void);

Constructor. It scans the USB bus for all connected devices.

None

None

Include Files

Call

Description

Return Value

Parameters

Classes of the C++ Interface Methods of the IGCGeneratorList Class

2-54 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

~IGCGeneratorList, Destructor
~IGCGeneratorList (void);

Destructor of the class.

None

None

None

Count
int Count (void) const;

Returns the number of generators found.

The number of generators found.

None

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

 Methods of the IGCGeneratorList Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-55

Get
const IGCGeneratorInfo & Get (IN int index) const;

Returns the IGCGeneratorInfo class with the index index. This call can be
used from TCL.

Reference to the IGCGeneratorInfo object.

index
Generator index.

None

Operator[]
const IGCGeneratorInfo & operator[] (IN int index) const;

Operator[] provides access to the IGCGeneratorInfo class that contains
serial number and port information for the generator. This type of
operator cannot be translated into TCL. If working with TCL use the
Get() function above.

Reference to the IGCGeneratorInfo object.

index
Generator index.

None

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCGeneratorList Class

2-56 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Rescan
void Rescan (void);

Rescans the USB bus.

None

None

None

Call

Description

Return Value

Parameters

See also

 Methods of the IGCGeneratorInfo Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-57

Methods of the IGCGeneratorInfo
Class

This class provides ‘static’ information needed from a generator. You can
use this information to connect a generator either via a USB port or by
using its serial number.

The following table lists all characteristic members of the
IGCGeneratorInfo class:

int GetPort (void) const;

const char * GetSerial (void) const;

const char * GetProductString (void) const;

ostream & Print (ostream & o) const;

#include <iggeneratorinfo.h>

GetPort
int GetPort (void) const;

Returns the USB port number.

USB port number.

None

“Connect” on page 2-21

Include Files

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCGeneratorInfo Class

2-58 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

GetSerial
const char * GetSerial (void) const;

Returns the serial number of the generator.

Pointer to the serial number.

None

None

GetProductString
const char * GetProductString (void) const;

Returns the product string of the generator (either “E2953A Generator
InfiniBand by 1” or “E2954A Generator InfiniBand by 4”)

Pointer to the product string.

None

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

 Methods of the IGCGeneratorInfo Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-59

Print
ostream & Print (ostream & o) const;

Prints a (human readable) list of the connected generators to the
specified stream.

Returns a reference to an ostream object with a list of connected
generators.

o
The stream to print into. This provides you with the possibility to print to a
file or to stdout.

None

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCPacket Class

2-60 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Methods of the IGCPacket Class

The class IGCPacket is not for direct use by the programmer. The classes
IGCIBAPacket, IGCRawIPPacket, IGCRawPacket, IGCMADPacket and
IGCSMPPacket are derived from this class and provide the user interface
to programming the packets. The constructor is protected. Use
constructors from derived classes for construction and DeletePacket() for
deletion. (While the use of destructors from derived classes is possible, it
is recommended to use DeletePacket() instead.)

 Figure 7 IGCPacket Class

The following table lists the characteristic members of the IGCPacket class:

void AppendBuffer (OUT IGCBuffer & buffer) const;

void AppendPayloadBuffer (OUT IGCBuffer & buffer) const;

IGCPacket * Clone (void) const;

void DeletePacket (void);

virtual ig_int16 GetActualLength (void) const;

virtual ig_int32 GetICRC (void) const;

Characteristic Members

 Methods of the IGCPacket Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-61

virtual void GetPayload (OUT IGCBuffer & bufPld) const;

ig_int32 GetType (void) const;

ig_int16 GetVCRC (void) const;

virtual ig_bool HasPayload (void) const;

virtual ~IGCPacket ();

IGCPacket * NewPacket (IN & IGCBuffer databuffer);

void SetPacketLength (IN ig_int16 length);

void SetPayload (IN const & IGCBuffer dataarray);

virtual void SetPRBSPayloadSize (IN ig_size size);

The following table lists the inherited members of the IGCPacket class (see
also “Methods of the IGCObject Class” on page 2-100):

void Set (IN ig_int32 prop, IN const IGCVal & val);
IGCVal Get (IN ig_int32 prop);

virtual void Default (void);

virtual void CopyProps (IN const IGCObject & other, IN ig_bool rwOnly);

#include <igpacket.h>

AppendBuffer

void AppendBuffer (OUT IGCBuffer & buffer) const;

Appends a packet to a byte stream buffer. Several packets can be packed
into a buffer to form a sequence.

None

buffer

Reference to IGCBuffer object. A buffer containing the appended packet.

None

Inherited Members

Include Files

Call

Description

Return Value

Output Parameters

See also

Classes of the C++ Interface Methods of the IGCPacket Class

2-62 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

AppendPayloadBuffer

void AppendPayloadBuffer (OUT IGCBuffer & buffer) const;

Appends a packet's payload to a byte stream buffer. The payload of
several packets can be packed together this way (for instance for the
purpose of recombining a message).

None

buffer

Reference to IGCBuffer object. A buffer containing the appended payload.

None

Clone

IGCPacket * Clone (void) const;

Clones a packet. Returns pointer to new packet of the same type.
Replaces the "virtual copy constructor", which is not available in C++.

IGCPacket object
Pointer to the new packet.

None

None

Call

Description

Return Value

Output Parameters

See also

Call

Description

Return Value

Parameters

See also

 Methods of the IGCPacket Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-63

DeletePacket

void DeletePacket (void);

Calls the destructor.

None

None

“IGCPacket, Destructor” on page 2-66

GetActualLength

virtual ig_int16 GetActualLength (void) const;

Returns actual packet length.
The call SetPacketLenght (GetActualLength()); automatically sets the
correct packet length.

A 16-bit integer holding the actual packet length.

None

“SetPacketLength” on page 2-67

GetICRC

virtual ig_int32 GetICRC (void) const;

Returns the ICRC of the packet

The ICRC is returned

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

Classes of the C++ Interface Methods of the IGCPacket Class

2-64 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

GetType
ig_int32 GetType (void) const;

Returns the type of packet. Five predefined packet types can be returned.
You can add your own definitions as required.

The packet type. Valid values are:
PACKET_UNDEFINED

PACKET_IBATRANSPORT

PACKET_RAW

PACKET_RAWIPV6

PACKET_IBAMAD

PACKET_IBASMP

None

None

GetPayload
virtual void GetPayload (OUT IGCBuffer & bufPld) const;

Returns the payload of packet.

None

bufPld
Buffer in which payload data will be stored

SetPayload

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

 Methods of the IGCPacket Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-65

GetVCRC
ig_int16 GetVCRC (void) const;

Returns the VCRC of the packet.

The VCRC

None

None

HasPayload
virtual ig_bool HasPayload (void) const {return IGD_TRUE;}

Returns if this type of packet has a payload

The packet type. Valid values are:
IGD_TRUE

IGD_FALSE

None

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCPacket Class

2-66 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

IGCPacket, Destructor

virtual ~IGCPacket ();

Destructor.

None

None

“DeletePacket” on page 2-63

NewPacket

IGCPacket * NewPacket (IN & IGCBuffer databuffer);

Takes the byte stream buffer databuffer and creates a new packet out of
it. This function is static and can be used without the need of a packet
object.

IGCPacket object for the new packet.

databuffer
The byte stream buffer containing data for the new packet.

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCPacket Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-67

SetPacketLength

void SetPacketLength (IN ig_int16 length);

Sets the packet length within the local routing header to the specified
length. You can create falsified packets by specifying an incorrect length.

None

length

A 16-bit integer specifying the packet length in bytes (see “Local Routing
Header Properties” on page 4-14). The length must be a multiple of four
bytes. The packet length is usually calculated automatically using
SetPayload, SetPRBSPayloadSize (depending on the value of the property
IGP_UsePRBS), the call Init() and the value of the property IGP_UsePRBS
(refer to “Generic Packet Properties” on page 4-12).

“GetActualLength” on page 2-63

SetPayload
void SetPayload (IN const & IGCBuffer dataarray);

Sets the payload to the data array. The length of the payload buffer must
be a multiple of four bytes. You must add zero to three padding bytes and
set BTH_PadCnt accordingly.

None

dataarray

Reference to the IGCBuffer object. The IGCBuffer class holds a buffer
(dataarray) for a data payload.

GetPayload

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCPacket Class

2-68 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

SetPRBSPayloadSize
virtual void SetPRBSPayloadSize (IN ig_size size);

Sets the size of the PRBS payload.

None

Size

Payload size in bytes. The size must be a multiple of 4 bytes.

None

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCRawPacket Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-69

Methods of the IGCRawPacket
Class

The class IGCRawPacket holds an InfiniBand raw packet. Only the local
routing header is present in this type of packet.

Note that the use of DeletePacket() is the recommended method of calling
a destructor even though this class has its own destructor. DeletePacket()
is defined in the base class IGCPacket (see “DeletePacket” on page 2-63).

 Figure 8 IGCRawPacket Class

The following table lists the characteristic members of the IGCRawPacket
class:

 IGCRawPacket (void);

virtual ~IGCRawPacket (void);

Characteristic Members

Classes of the C++ Interface Methods of the IGCRawPacket Class

2-70 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

The following table lists the inherited members of the IGCPacket class that
are recommended for direct use (see also “Methods of the IGCObject
Class” on page 2-100):

void AppendBuffer (OUT IGCBuffer & buffer) const;

void AppendPayloadBuffer (OUT IGCBuffer & buffer) const;

IGCPacket Clone (void) const;

void DeletePacket (void);

virtual ig_int16 GetActualLength (void) const;

virtual ig_bool HasPayload (void) const;

ig_int32 GetType (void) const;

virtual ig_int32 GetICRC (void) const;

virtual void GetPayload (OUT IGCBuffer & bufPld) const;

ig_int16 GetVCRC (void) const;

IGCPacket * NewPacket (IN & IGCBuffer databuffer);

void SetPacketLength (IN ig_int16 length);
void SetPayload (IN const & IGCBuffer dataarray);

virtual void SetPRBSPayloadSize (IN ig_size size);

void Set (IN ig_int32 prop, IN const IGCVal & val);

IGCVal Get (IN ig_int32 prop);

virtual void Default (void);

virtual void CopyProps (IN const IGCObject & other, IN ig_bool rwOnly);

#include <igrawpacket.h>

Inherited Members

Include Files

 Methods of the IGCRawPacket Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-71

IGCRawPacket, Constructor

IGCRawPacket (void);

Constructor.

None

None

None

IGCRawPacket, Destructor
virtual ~IGCRawPacket (void);

Destructor.

None

None

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCRawIPPacket Class

2-72 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Methods of the IGCRawIPPacket
Class

This class holds raw IPv6 packets that pass through the InfiniBand
network.

Note that the use of DeletePacket() is the recommended method of calling
a destructor even though this class has its own destructor. DeletePacket()
is defined in the base class IGCPacket (see “DeletePacket” on page 2-63).

 Figure 9 IGCRawIPPacket Class

The following table lists the characteristic members of the IGCRawIPPacket
class:

 IGCRawIPPacket ();

virtual ~IGCRawIPPacket (void);

Characteristic Members

 Methods of the IGCRawIPPacket Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-73

The following tables list all inherited members of the IGCPacket class that
are recommended for direct use (see also “Methods of the IGCObject
Class” on page 2-100):

void AppendBuffer (OUT IGCBuffer & buffer) const;

void AppendPayloadBuffer (OUT IGCBuffer & buffer) const;

IGCPacket * Clone (void) const;

void DeletePacket (void);

virtual ig_int16 GetActualLength (void) const;

virtual ig_int32 GetICRC (void) const;

virtual void GetPayload (OUT IGCBuffer & bufPld) const;

ig_int32 GetType (void) const;

ig_int16 GetVCRC (void) const;

virtual ig_bool HasPayload (void) const;

IGCPacket * NewPacket (IN & IGCBuffer databuffer);

void SetPacketLength (IN ig_int16 length);
void SetPayload (IN const & IGCBuffer dataarray);

virtual void SetPRBSPayloadSize (IN ig_size size);

void Set (IN ig_int32 prop, IN const IGCVal & val);

IGCVal Get (IN ig_int32 prop);

virtual void Default (void);

virtual void CopyProps (IN const IGCObject & other, IN ig_bool rwOnly);

#include < igippacket.h>

Inherited Members

Include Files

Classes of the C++ Interface Methods of the IGCRawIPPacket Class

2-74 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

IGCRawIPPacket, Constructor
IGCRawIPPacket ();

Constructor.

None

None

None

IGCRawIPPacket, Destructor
virtual ~IGCRawIPPacket (void);

Destructor.

None

None

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

 Methods of the IGCIBAPacket Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-75

Methods of the IGCIBAPacket
Class

The class IGCIBAPacket is derived directly from the IGCPacket class. It
holds a standard InfiniBand packet. The functions Set() and Get()
necessary to manipulate packet properties are derived from the base
class IGCObject. (This is true for all packet classes.)

Note that the use of DeletePacket() is the recommended method of calling
a destructor even though this class has its own destructor. DeletePacket()
is defined in the base class IGCPacket (see “DeletePacket” on page 2-63).

The constructor is available in two versions:

• as a default constructor which requires an Init() call for initialization

• as a constructor for the class with Opcode and IsGlobal parameter.

Refer also to “Sending Packets” on page 1-2.

 Figure 10 IGCIBAPacket Class

Classes of the C++ Interface Methods of the IGCIBAPacket Class

2-76 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

The following table lists the characteristic members of the IGCIBAPacket
class that are recommended for direct use:

void Init (IN Opcode code, IN ig_bool IsGlobal);

IGCIBAPacket (IN Opcode code, IN ig_bool IsGlobal);

IGCIBAPacket (void);

virtual ~IGCIBAPacket (void);

The following table lists the inherited members of the IGCPacket class (see
also “Methods of the IGCObject Class” on page 2-100):

void AppendBuffer (OUT IGCBuffer & buffer) const;

void AppendPayloadBuffer (OUT IGCBuffer & buffer) const;

IGCPacket * Clone (void) const;

void DeletePacket (void);

virtual ig_int16 GetActualLength (void) const;

virtual ig_int32 GetICRC (void) const;

virtual void GetPayload (OUT IGCBuffer & bufPld) const;

ig_int32 GetType (void) const;

ig_int16 GetVCRC (void) const;

virtual ig_bool HasPayload (void) const

IGCPacket * NewPacket (IN & IGCBuffer databuffer);

void SetPacketLength (IN ig_int16 length);

void SetPayload (IN const & IGCBuffer dataarray);

virtual void SetPRBSPayloadSize (IN ig_size size);

void Set (IN ig_int32 prop, IN const IGCVal & val);

IGCVal Get (IN ig_int32 prop);

virtual void Default (void);

virtual void CopyProps (IN const IGCObject & other, IN ig_bool rwOnly);

#include <igibapacket.h>

Characteristic Members

Inherited Members

Include Files

 Methods of the IGCIBAPacket Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-77

Init
void Init (IN Opcode code, IN ig_bool IsGlobal);

Initializes the InfiniBand packet.

None

code

For opcodes refer to “Enumeration Definitions” on page 3-1.

IsGlobal

Boolean value that determines whether the packet carries a global routing
header.

None

IGCIBAPacket, Default Constructor
IGCIBAPacket (void);

Default constructor. You have to call the Init() method before using the
packet.

None

None

IGCIBAPacket, Constructor for the Class and IGCIBAPacket Destructor
below

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCIBAPacket Class

2-78 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

IGCIBAPacket, Constructor for the Class

IGCIBAPacket (IN Opcode code, IN ig_bool IsGlobal);

Constructor for the class.

None

code

For opcodes refer to “Enumeration Definitions” on page 3-1

IsGlobal

Boolean value that determines whether the packet carries a global routing
header.

IGCIBAPacket, Default Constructor above and IGCIBAPacket Destructor
below

~IGCIBAPacket, Destructor
virtual ~IGCIBAPacket(void);

Destructor.

None

None

IGCIBAPacket, Default Constructor and IGCIBAPacket Constructor for
the Class above

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Parameters

See also

 Methods of the IGCMADPacket Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-79

Methods of the IGCMADPacket
Class

This class is intended for creating MADs (Management Datagrams). While
a MAD packet can also be created using the IGCIBAPacket class, it is
simpler to use the MAD packet class. The IGCMADPacket class is derived
from the IGCIBAPacket class.

Note that the use of DeletePacket() is the recommended method of calling
a destructor even though this class has its own destructor. DeletePacket()
is defined in the base class IGCPacket (see “DeletePacket” on page 2-63).

 Figure 11 IGCMADPacket Class

The following table lists the characteristic members of the IGCMADPacket
class:

 IGCMADPacket(ig_bool IsGlobal);

virtual ~IGCMADPacket(void);

Characteristic Members

Classes of the C++ Interface Methods of the IGCMADPacket Class

2-80 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

The following tables list all inherited members of the IGCPacket class that
are recommended for direct use (see also “Methods of the IGCObject
Class” on page 2-100):

void AppendBuffer (OUT IGCBuffer & buffer) const;

void AppendPayloadBuffer (OUT IGCBuffer & buffer) const;

IGCPacket * Clone (void) const;

void DeletePacket (void);

virtual ig_int16 GetActualLength (void) const;

virtual ig_int32 GetICRC (void) const;

virtual void GetPayload (OUT IGCBuffer & bufPld) const;

ig_int32 GetType (void) const;

ig_int16 GetVCRC (void) const

virtual ig_bool HasPayload (void) const

IGCPacket * NewPacket (IN & IGCBuffer databuffer);

void SetPacketLength (IN ig_int16 length);
void SetPayload (IN const & IGCBuffer dataarray);

virtual void SetPRBSPayloadSize (IN ig_size size);

void Set (IN ig_int32 prop, IN const IGCVal & val);

IGCVal Get (IN ig_int32 prop);

virtual void Default (void);

virtual void CopyProps (IN const IGCObject & other, IN ig_bool rwOnly);

#include <igmad.h>

Inherited Members

Include Files

 Methods of the IGCMADPacket Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-81

IGCMADPacket, Constructor
IGCMADPacket (ig_bool IsGlobal);

Constructor.

None

IsGlobal
Boolean value that determines whether the packet carries a global routing
header.

None

~IGCMADPacket, Destructor
virtual ~IGCMADPacket (void);

Destructor.

None

None

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCSMPPacket Class

2-82 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Methods of the IGCSMPPacket
Class

This class is intended for creating SMPs (Subnet Management Packets).
While a SMP packet can also be created using the IGCMADPacket class, it is
simpler to use the SMP packet class. The IGCSMPPacket class is derived
from the IGCMADPacket class.

Note that the use of DeletePacket() is the recommended method of calling
a destructor even though this class has its own destructor. DeletePacket()
is defined in the base class IGCPacket (see “DeletePacket” on page 2-63).

 Figure 12 IGCSMPPacket Class

The following table lists the characteristic members of the IGCSMPPacket
class:

 IGCSMPPacket();

virtual ~IGCSMPPacket(void);

Characteristic Members

 Methods of the IGCSMPPacket Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-83

The following tables list all inherited members of the IGCPacket class that
are recommended for direct use (see also “Methods of the IGCObject
Class” on page 2-100):

void AppendBuffer (OUT IGCBuffer & buffer) const;

void AppendPayloadBuffer (OUT IGCBuffer & buffer) const;

IGCPacket * Clone (void) const;

void DeletePacket (void);

virtual ig_int16 GetActualLength (void) const;

virtual ig_int32 GetICRC (void) const;

virtual void GetPayload (OUT IGCBuffer & bufPld) const;

ig_int32 GetType (void) const;

ig_int16 GetVCRC (void) const

virtual ig_bool HasPayload (void) const

IGCPacket * NewPacket (IN & IGCBuffer databuffer);

void SetPacketLength (IN ig_int16 length);
void SetPayload (IN const & IGCBuffer dataarray);

virtual void SetPRBSPayloadSize (IN ig_size size);

void Set (IN ig_int32 prop, IN const IGCVal & val);

IGCVal Get (IN ig_int32 prop);

virtual void Default (void);

virtual void CopyProps (IN const IGCObject & other, IN ig_bool rwOnly);

#include <igmad.h>

Inherited Members

Include Files

Classes of the C++ Interface Methods of the IGCSMPPacket Class

2-84 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

IGCSMPPacket, Constructor
IGCSMPPacket (void);

Constructor.

None

None

None

~IGCSMPPacket, Destructor
virtual ~IGCSMPPacket (void);

Destructor.

None

None

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

 Methods of the IGCBuffer Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-85

Methods of the IGCBuffer Class

The class IGCBuffer provides a buffer, which contains any number of
bytes. The class can be used to represent packets as byte streams or to
handle any byte arrays necessary. There are functions to convert packets
to buffers and vice versa. The buffer class has also functions to save and
load its content.

The following table lists all characteristic members of the IGCBuffer class:

 IGCBuffer (void);

~IGCBuffer (void);

void ReadFile (const char * filename);

void WriteFile (const char * filename);

void SaveFile (const char * filename);

int Cmp (IGCBuffer & cmpBuffer) const;

void PeekData (ig_size size, ig_int8ptr pRetData) const;

void Push (ig_size nBits, const IGCUIntX & inVal);

void Pop (ig_size nBits, IGCUIntX & retVal);

void PopData (ig_size size, ig_int8ptr pRetData);

void SetAt (ig_size pos, ig_size nBits, const IGCUIntX & inVal);

ig_size Size (void) const;

void GetAt (ig_size pos, ig_size nBits, IGCUIntX & retVal) const;

void Fill (ig_size size, ig_int8 fillChar);

void FillRandom (ig_size size);

void Init (ig_size size = 0);

#include <igbuffer.h>

Characteristic Members

Include Files

Classes of the C++ Interface Methods of the IGCBuffer Class

2-86 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

IGCBuffer, Constructor
IGCBuffer (void);

Constructor for the class.

None

None

None

IGCBuffer, Destructor
~IGCBuffer (void);

Destructor of the class.

None

None

None

ReadFile
void ReadFile (const char * filename);

Reads a file into a buffer.

None

filename
The file to be read.

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCBuffer Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-87

WriteFile
void WriteFile (const char * filename);

Writes the content of a buffer to a file. This deletes the contents of the
buffer.

None

filename
The file to be written.

None

SaveFile
void SaveFile (const char * filename);

Saves the content of a buffer to a file without emptying the buffer.

None

filename
The file to be saved.

None

Cmp
int Cmp (IGCBuffer & cmpBuffer) const;

Compares two buffers bytewise.

Returns 0 if the buffers are equal, otherwise returns -1 or 1.

cmpBuffer
The buffer to compare.

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

Classes of the C++ Interface Methods of the IGCBuffer Class

2-88 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

PeekData
void PeekData (ig_size size, ig_int8ptr pRetData) const;

Peeks data from the buffer without modifying its contents.

None

size
The number of bytes.

pRetData
The result.

None

Push
void Push (ig_size nBits, const IGCUIntX & inVal);

Appends bits at the end of the buffer.

None

nBits
The number of bits to be appended.

inVal
The value to which the appended bits should be set.

None

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCBuffer Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-89

Pop
void Pop (ig_size nBits, IGCUIntX & retVal);

Removes bits starting at the beginning of the buffer.

None

nBits
The number of bits to be removed.

retVal
The bits are stored in retVal.

None

PopData
void PopData (ig_size size, ig_int8ptr pRetData)

Removes the bytestream starting at the beginning of the buffer.

None

size
The number of bytes.

pRetData
The bytestream is stored in pRetData.

None

Call

Description

Return Value

Input Parameters

Output Parameters

See also

Call

Description

Return Value

Input Parameters

Output Parameters

See also

Classes of the C++ Interface Methods of the IGCBuffer Class

2-90 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

SetAt
void SetAt (ig_size pos, ig_size nBits, const IGCUIntX & inVal);

Sets a certain number of bits to a specific value at the position pos.

None

pos
The position in the buffer.

nBits
The number of bits to be modified.

inVal
The value to which the bits should be set.

None

Size
ig_size Size (void) const;

Returns current size of buffer in bytes.

Size in bytes

None

None.

None

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

Output Parameters

See also

 Methods of the IGCBuffer Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-91

GetAt
void GetAt (ig_size pos, ig_size nBits, IGCUIntX & retVal) const;

Gets a certain number of bits starting at position pos.

None

pos
The position in the buffer.

nBits
The number of bits to be read out.

retVal

The returned value.

None

Fill
void Fill (ig_size size, ig_int8 fillChar);

Fills the entire buffer with the character fillChar.

None

size
Size of the buffer. It is determined by the number of fill characters.

fillChar
The character used to fill the buffer.

None

Call

Description

Return Value

Input Parameters

Output Parameters

See also

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCBuffer Class

2-92 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

FillRandom
void FillRandom (ig_size size);

Fills the entire buffer with random values.

None

size
Size of the buffer. It is determined by the number of fill characters.

None

Init
void Init (ig_size size = 0);

Initializes the buffer with a certain size. Note that the buffer is still empty
after the call to Init(). (Init() clears the contents of the buffer).

None

size
The size to which the buffer is initialized. Normally, Init() is called to
flush the buffer (ensure it is empty). The initial buffer space is 0, this can
later be expanded as needed. When called with a size other than 0, the
memory is reserved for the specified buffer size. This can make buffer
handling more efficient.

None

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCVal Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-93

Methods of the IGCVal Class

The various header definitions use various data types for variables (from
boolean up to 128 bits for the global route header). For this reason the
IGCVal class has been created, which can hold all the different types of
values. This avoids the need for a separate call for each data type when
setting a property with Set(). Instead, just one call is necessary, where
the IGCVal passed with the call holds the correct data type.

#include <igval.h>

IGCVal, Constructor
IGCVal (void);

Constructor.

None

None

None

Include Files

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCVal Class

2-94 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

IGCVal, Destructor
virtual ~IGCVal ();

Destructor.

None

None

None

Constructor by Type
IGCVal (IGEValType type);

Constructor by type.

None

type
Valid values are:
igt_INT

igt_BOOL

igt_UINT8

igt_UINT16

igt_UINT32

igt_STRING

igt_UINTX

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCVal Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-95

Copy Constructor
IGCVal (const IGCVal & el);

Copy constructor.

A newly created IGCVal object.

el
Reference to the object that should be copied.

None

Type Conversions
IGCVal (const int);

IGCVal (const ig_bool);

IGCVal (const ig_int8);

IGCVal (const ig_int16);

IGCVal (const ig_int32);

IGCVal (const IGCUIntX &);

IGCVal (const IGCString &);

IGCVal (ig_charcptr);

Conversions from the data types used.

The new IGCVal class with the appropriate content.

Parameters are the input values of type int, ig_bool, ig_int8, and so on.

None

Call

Description

Return Value

Input Parameters

See also

Calls

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCVal Class

2-96 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Const Conversions
operator int (void) const;

operator ig_int8 (void) const;

operator ig_int16 (void) const;

operator ig_int32 (void) const;

operator IGCUIntX (void) const;

operator ig_bool (void) const;

operator IGCString (void) const;

operator ig_charcptr (void) const;

Const conversions

The new IGCVal class with the appropriate content.

None

None

Calls

Description

Return Value

Parameters

See also

 Methods of the IGCVal Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-97

Non Const Conversions
operator int (void);

operator ig_int8 (void);

operator ig_int16 (void);

operator ig_int32 (void);

operator IGCUIntX & (void);

operator ig_bool (void);

operator IGCString & (void);

operator ig_charcptr (void);

operator ig_int8ptr (void);

operator ig_charcptr (void) const;

Non const conversions

The new IGCVal class with the appropriate content.

None

None

Calls

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCVal Class

2-98 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Assignments
IGCVal & operator = (const int val);

IGCVal & operator = (const ig_int8 val);

IGCVal & operator = (const ig_int16 val);

IGCVal & operator = (const ig_int32 val);

IGCVal & operator = (const IGCUIntX & val);

IGCVal & operator = (const ig_bool val);

IGCVal & operator = (const IGCString & val);

IGCVal & operator = (ig_charcptr val);

IGCVal & operator = (const IGCVal & el);

Assignments

IGCVal

Reference to IGCVal object.

val

The assigned value.

el

The IGCVal to assign.

None

Calls

Description

Return Value

Input Parameters

See also

 Methods of the IGCVal Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-99

Comparisons
ig_bool operator == (const int val) const;

ig_bool operator == (const ig_int8 val) const;

ig_bool operator == (const ig_int16 val) const;

ig_bool operator == (const ig_int32 val) const;

ig_bool operator == (const IGCUIntX & val) const;

ig_bool operator == (const ig_bool val) const;

ig_bool operator == (const IGCString & val) const;

ig_bool operator == (ig_charcptr pString) const;

ig_bool operator == (const IGCVal & val) const;

Comparisons

ig_bool

True or false for equal or not equal.

val

The respective parameter values are:
integer,
8-bit integer,
16-bit integer,
32-bit integer and so on.

pString

A pointer to a char buffer (ig_charcptr is type defined as const char *).
Comparison returns true if either the string in IGCVal is equal to the one
in pString, or the string representation of the value is equal to pString.
Use with caution!

None

Calls

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCObject Class

2-100 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Methods of the IGCObject Class

This class is purely virtual and cannot be created by the user. It
implements the Set() and Get() functions for all classes with properties.

The constructor and destructor of this class are protected and not for
public use.

The following table lists the characteristic members of the IGCObject class:

void Set (IN ig_int32 prop, IN const IGCVal & val);

IGCVal Get (IN ig_int32 prop);

virtual void Default (void);

virtual void CopyProps (IN const IGCObject & other, IN ig_bool rwOnly);

#include <igobject.h>

Characteristic Members

Include Files

 Methods of the IGCObject Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-101

Set
void Set (IN ig_int32 prop, IN const IGCVal & val);

Sets a property to a certain value.

None

prop
The property to be set. The list of properties is dependent on the derived
class. For the appropriate list refer to “Properties and Programmatic
Settings” on page 4-1.

 val
The value assigned to the property.

None

Get
IGCVal Get (IN ig_int32 prop);

Retreives the value of a specific property.

IGCVal object.

prop
The property to be retrieved. The list of properties is dependent on the
derived class. For the appropriate list refer to “Properties and
Programmatic Settings” on page 4-1.

None

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the IGCObject Class

2-102 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Default
virtual void Default (void);

Sets all properties to default values. Refer to “Properties and
Programmatic Settings” on page 4-1.

None

None

None

CopyProps
virtual void CopyProps (IN const IGCObject & other, IN ig_bool rwOnly);

Copies NodeInfo, GUIDInfo, NodeDescription and PortInfo properties into
the generator-owned instances of this class.

None

other
The object to be copied from.

rwOnly
Specifies whether to copy properties that have a set pr_RO (read-only
permission).

None

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCStatus Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-103

Methods of the IGCStatus Class

The IGCStatus class contains several information properties that reflect
the current status of the connected generator. You pass a reference of an
IGCStatus class to the generator and the generator fills the class with the
appropriate data.

The properties of this class are listed in “Properties and Programmatic
Settings” on page 4-1. The Get() function for reading out status property
values is derived from IGCObject.

The following table lists the characteristic members of the IGCStatus class:

 IGCStatus (void);

~IGCStatus (void);

ostream & Print (ostream & o) const;

#include <iggenerator.h>

IGCStatus, Constructor
IGCStatus (void);

Constructor for the class.

None

None

None

Files

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCStatus Class

2-104 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

~IGCStatus, Destructor
~IGCStatus (void);

Destructor of the class.

None

None

None

Print
ostream & Print (ostream & o) const;

Prints the status as a text representation to the specified ostream.

Returns a reference to an ostream object with the status information for
the connected generator.

o
The stream to print into. This provides you with the possibility to print to a
file or to stdout.

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCPacketHandler Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-105

Methods of the IGCPacketHandler
Class

The class IGCPacketHandler provides the methods for the packet handler
to manage packets within the handler.

You cannot use the class directly, it is purely virtual and has to be
derived. You need to implement versions of the calls CheckPacket() and
HandlePacket(). The generator uses these methods to check if a registered
packet handler wants to handle a packet (CheckPacket()) and if so, passes
the packet to it for handling (HandlePacket()). You are free to do whatever
is necessary in these two functions.

The following table lists the characteristic members of the
IGCPacketHandler class:

virtual ~IGCPacketHandler ();

virtual IGEPacketStatus CheckPacket (IGCPacket & packet) = 0;

virtual IGEPacketStatus HandlePacket (IGCPacket & packet) = 0;

IGCGenerator * GetGenerator (void) { return m_pGenerator; }

#include <igpackethandler.h> Files

Classes of the C++ Interface Methods of the IGCPacketHandler Class

2-106 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

~IGCPacketHandler, Destructor
virtual ~IGCPacketHandler ();

Destructor of the class.

None

None

None

CheckPacket
virtual IGEPacketStatus CheckPacket (IGCPacket & packet) = 0;

Called from the generator to check if the packet handler wants to deal
with the packet.

Valid values for the packet status are:

• REJECT
 The packet has been rejected by the packet handler.

• ACCEPT
 The packet has been accepted by the packet handler.

• CHANGE
The handler modified the packet but still requires another packet
handler to handle the packet.

packet

The packet to be checked by the packet handler.

HandlePacket below

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Input Parameters

See also

 Methods of the IGCPacketHandler Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-107

HandlePacket
virtual IGEPacketStatus HandlePacket (IGCPacket & packet) = 0;

Called from the generator if the call to CheckPacket() (see above) returned
ACCEPT. No other packet handler is called thereafter for this packet.

The return value is the same as for CheckPacket. It is ignored in this
release.

packet

The packet to be handled by the packet handler.

CheckPacket above

GetGenerator
IGCGenerator * GetGenerator (void) { return m_pGenerator; }

Returns a pointer to the generator. This can be used to access PortInfo or
NodeInfo structs if needed.

Pointer to the IGCGenerator object.

None

“IGCNodeInfo Properties” on page 4-6, “IGCPortInfo Properties” on
page 4-8

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCPacketHandlerTcl Class

2-108 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Methods of the
IGCPacketHandlerTcl Class

The class IGCPacketHandlerTcl lets you register two TCL scripts that
handle and check packets. This is a convenience function to help you
work with TCL scripts.

The SMA handler that manages MAD packets is also part of the software
distribution. It is provided as a sample in the form of a TCL script.

The following table lists the characteristic members of the
IGCPacketHandlerTcl class:

 IGCPacketHandlerTcl (char *checkScript, char *handleScript);

virtual ~IGCPacketHandlerTcl ();

#include <igpackethandlertcl.h>

NOTE

Files

 Methods of the IGCPacketHandlerTcl Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-109

IGCPacketHandlerTcl
IGCPacketHandlerTcl (char *checkScript, char *handleScript);

Constructor for the class.

None

checkScript
The check script is passed to the class as character pointer.

handleScript

The handle is passed to the class as character pointer.

None

~IGCPacketHandlerTcl, Destructor
virtual ~IGCPacketHandlerTcl ();

Destructor of the class.

None

None

None

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCCallBack Class

2-110 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Methods of the IGCCallBack Class

The class IGCCallBack provides the methods to handle callbacks from the
API. You cannot use the class directly, it is purely virtual and has to be
derived. You need to implement method Notify() in your derived class.
The generator uses this method to pass the callback data for handling.
You are free to do whatever is necessary in this method.

The characteristic members of the IGCCallBack class are as follows::

• IGCCallBack (void)

• ~IGCCallBack (void)

• ig_int32 QueryNotifyMask (void) const

• void SetNotifyMask (ig_int32 mask)

• virtual IGECBReturn Notify (ig_int32 changeMask, IGCObject & obj,

IGCGenerator & generator) = 0

#include <igcallback.h> Files

 Methods of the IGCCallBack Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-111

IGCCallBack, Constructor
IGCCallBack (void);

Default constructor. As IGCCallBack is pure virtual, you cannot use this
directly. Instead, derive from IGCCallBack and implement Notify.

None

None

None

~IGCCallBack, Destructor
virtual ~IGCCallBack ();

Destructor of the class.

None

None

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCCallBack Class

2-112 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Notify
virtual IGECBReturn Notify (ig_int32 changeMask,

IGCObject & obj,

IGCGenerator & generator) = 0;

Called from the generator with the callback data.

Notify is declared protected and cannot be called directly from user
programs!

Valid values are:

• REJECT (0) - Pass. nothing changed, pass on data to other callback
handlers in chain

• ACCEPT (1) - Accept, noone else in the chain gets called

• CANCEL (2) - Cancel operation completely (for progress/packet
callbacks...)

changeMask

Mask for the changed properties in obj (not for packet callback).

obj

The data passed to the callback handler:
IGCStatus object for status callbacks,
IGCProgress object for progress callbacks
IGCPacket object for packet callbacks

generator

Reference to the calling generator

None

Call

Description

NOTE

Return Value

Input Parameters

See also

 Methods of the IGCCallBack Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-113

SetNotifyMask
void SetNotifyMask (ig_int32 mask)

Sets the mask for this callback. Each bit represents a property in the data
object.

Example:. Set mask to (1 << IGCStatus::LinkState) to see link state
changes.

None

mask

QueryNotifyMask

QueryNotifyMask
ig_int32 QueryNotifyMask (void) const

Queries the current notification mask

The mask.

None

SetNotifyMask

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the IGCCallBackTcl Class

2-114 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Methods of the IGCCallBackTcl
Class

The class IGCCallBackTcl lets you register a TCL script that handles
callback events. This is a convenient function to help you work with TCL
scripts.

The following table lists the characteristic members of the IGCCallBackTcl
class:

(Constructor) IGCCallBackTcl (ig_charcptr script);

#include <igCallBacktcl.h>

NOTE

Files

 Methods of the IGCCallBackTcl Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-115

IGCCallBackTcl
IGCCallBackTcl (ig_charcptr script);

Constructor for the class.

None

script
The script is passed to the class as character pointer. It must be the name
of a TCL procedure. This must be of the form:

proc myScript {pCallBack changeMask pObject pGenerator} { <body> }

pCallBack is a pointer to the callback object, so you can call
Set/QueryNotifyMask from within your script.

None

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the Error Class

2-116 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Methods of the Error Class

As with all other classes within the generator, the error class IGCError can
be printed using the C++ stream operator or the method Print() (see
“Methods of the IGCGeneratorInfo Class” on page 2-57). This results in a
textual error description readable by humans.

The following table lists all characteristic members of the Error class:

void Clear (void);

EErrtype Error (void) const;

 IGCError (void);

 IGCError (IN const IGCError & err);

 ~IGCError (void);

IGCString GetErrorText (void) const;

ostream & operator << (ostream & o, const IGCError & theErr);

ostream & Print (ostream & o) const;

#include <igerror.h>

Characteristic Members

Include Files

 Methods of the Error Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-117

Clear
void Clear(void);

Clears all errors.

None

None

None

Error
EErrtype Error (void) const;

Returns the error code.

Eerrtype object.
Holds the error code. See also “EErrtype” on page 3-1.

None

None

IGCError, Constructor
IGCError (void);

Constructor.

None

None

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

Classes of the C++ Interface Methods of the Error Class

2-118 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

IGCError, Copy Constructor
IGCError (IN const IGCError & err);

Copy constructor.

None

err
Reference to an IGCError object.

None

IGCError, Destructor
~IGCError (void);

Destructor.

None

None

None

GetErrorText
IGCString GetErrorText (void) const;

Copy constructor.

IGCString object.
Retrieves the Error string.

None

None

Call

Description

Return Value

Input Parameters

See also

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Parameters

See also

 Methods of the Error Class Classes of the C++ Interface

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 2-119

Operator
ostream & operator << (ostream & o, const IGCError & theErr);

Returns the error to the specified stream in the form of a textual
description.

Reference to the ostream object that holds the error text.

None

None

Print
ostream & Print (ostream & o) const;

Prints the content of the class as text representation to the specified
ostream.

Returns a reference to an ostream object with the error text.

o
The stream to print into. This provides you with the possibility to print to a
file or to stdout.

None

Call

Description

Return Value

Parameters

See also

Call

Description

Return Value

Input Parameters

See also

Classes of the C++ Interface Methods of the Error Class

2-120 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 3-1

Enumeration Definitions

EErrtype

Enum over all different error codes. The following list of errors gives
detailed descriptions:

Error Description

IGE_OK = 0 Everything is OK.

IGE_FATAL Fatal error occurred.

IGE_RANGE Range checking failed.

IGE_ASSERT Assertion failed. Usually an unrecoverable error.

IGE_OUTOFMEM The application has run out of memory.

IGE_INVALIDHANDLE The handle you are using is invalid.

IGE_SYNTAX Syntax error while parsing input parameters (for example
pattern terms).

IGE_NOTINITIALIZED The object needs initializing before use.

IGE_FILENOTFOUND The specified file could not be found.

IGE_TESTFAILED The test failed.

IGE_WARNING Is used to transport a warning message.

IGE_INVALIDPACKET Packet parsing failed.

IGE_FWERROR Generator firmware encountered an error.

IGE_WIN32 Error generated by WIN32 calls.

IGE_UNDEFPROP Undefined property.

IGE_INVALIDTYPE Invalid type used.

IGE_BUFFERUNDERRUN Buffer too small. Emptied while reading out data.

IGE_VERSION Version mismatch. Upgrade to the newest hardware version.

IGE_GENERAL General failure (none of the above).

Description

Enumeration Definitions

3-2 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

IGCGenerator::IGEPropName

Enumerated integer for all property values that can be set within the
generator. For a description of the properties, see “Properties and
Programmatic Settings” on page 4-1.

IGCPacket::IGEPropName

Enumerated integer for all property values that can be set within the base
class IGCPacket (see also “Properties and Programmatic Settings” on
page 4-1).

IGCVal::Opcode

Enumerated integer offering a choice of available opcodes. For the exact
definition, see the opcode overview below:

Reliable Connection Unreliable Connection Reliable Datagram Unreliable Datagram

RC_SENDFirst=0x0 UC_SENDFirst=0x20 RD_SENDFirst=0x40 0x60-0x63 Reserved for
UD

RC_SENDMiddle UC_SENDMiddle RD_SENDMiddle UD_SENDOnly=0x64

RC_SENDLast UC_SENDLast RD_SENDLast UD_SENDOnlyImm

RC_SENDLastImm UC_SENDLastImm RD_SENDLastImm 0x66 0x7f Reserved for
UD

RC_SENDOnly UC_SENDOnly RD_SENDOnly 0x80-0xbf Reserved

RC_SENDOnlyImm UC_SENDOnlyImm RD_SENDOnlyImm 0xc0-0xff
Manufacturer specific
opcodes

RC_RDMAWRITEFirst UC_RDMAWRITEFirst RD_RDMAWRITEFirst

RC_RDMAWRITEMiddle UC_RDMAWRITEMiddle RD_RDMAWRITEMiddle

RC_RDMAWRITELast UC_RDMAWRITELast RD_RDMAWRITELast

RC_RDMAWRITELastImm UC_RDMAWRITELastImm RD_RDMAWRITELastImm

RC_RDMAWRITEOnly UC_RDMAWRITEOnly RD_RDMAWRITEOnly

RC_RDMAWRITEOnlyImm UC_RDMAWRITEOnlyImm RD_RDMAWRITEOnlyImm

RC_RDMAREADRequest 0x2c-0x3f Reserved for
UC

RD_RDMAREADRequest

Description

Description

Description

 Enumeration Definitions

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 3-3

Reliable Connection Unreliable Connection Reliable Datagram Unreliable Datagram

RC_RDMAREADresponseFirst RD_RDMAREADresponseFirst

RC_RDMAREADresponseMiddle RD_RDMAREADresponseMiddle

RC_RDMAREADresponseLast RD_RDMAREADresponseLast

RC_RDMAREADresponseOnly RD_RDMAREADresponseOnly

RC_Acknowledge RD_Acknowledge

RC_AtomicAcknowledge RD_AtomicAcknowledge

RC_CmpSwap RD_CmpSwap

RC_FetchAdd RD_FetchAdd

0x15-0x1f Reserved for RC 0x55-0x5f Reserved for RD

Enumeration Definitions

3-4 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 4-1

Properties and Programmatic Settings

The following lists of properties are used to program the E2953A. You can
set all properties directly. Some settings have a generic impact on the
behavior of the generator, these are listed under Generator Properties
below. Certain settings can be made with any packet, these are listed
under “Status Properties” on page 4-3.

Some values necessary for the generation of packet headers are supplied
by the global property lists or are set by a subnet manager (source is the
local id). These values can be preset in a packet using the call
PacketInit() in the class generator.

Generator Properties

Generator properties control the behavior of the generator. They also
influence the content of headers of outgoing packets. The prefix IG__
stands for generic generator properties. Header properties have an
appropriate prefix (LRH_ or AECK). The IGCGenerator method PacketInit()
initializes packets with the correct header information.

Properties and Programmatic Settings Generator Properties

4-2 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

 Table 8 Generator Property List (IGCGenerator::Prop)

Property Name Range Default Description

PRBSSeed 0 – 211 1 Starts a seed of the internal PRBS for data
payload generation. A value of 0 results in
all 0s for the payload.

BADPacketDiscard 0 – 1 1 = discard Discards or keeps invalid packets on
receive. Works for packets with bad ICRC
(bad VCRC and EBP are discarded in HW).

TransmitRepeatCounter 0 – 65535 1 (0 means
infinity)

Sets a counter on how often the transmit
memory is to be repeated.

RepeatCounter1,
RepeatCounter2,
RepeatCounter3

0 – 216 1 (0 means
infinity)

Holds a value for the repeat line counter of
the block memory. The packet that selects
one of the counters get repeated
countervalue number of times.
RepeatCounter0 is not accessible by the
user.

PSNStartValue 24 bit 1 Packet sequence number start value. If the
automatic packet sequence number
generation is enabled, this value is taken as
the start value (see IGP_AutoCalculatePSN
in “Generic Packet Properties” on
page 4-12).

CodeGroup 0 – 210 0 This code group is used if the error
insertion method for the packet selects an
invalid code group as an error to be inserted
into the packet.

 Status Properties Properties and Programmatic Settings

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 4-3

Status Properties

The following list of properties determine the current state of the
connected generator. They stem from the class IGCStatus.

 Table 9 IGCStatus Property List (IGCStatus::EPropName)

Property Name Range Default Description (if = 1)

TransmitRunning 0 - 1 0 The transmit memory is currently
sending packets.

TransmitFinished 0 - 1 0 The transmit memory has completed
sending all packets.

TransmitError 0 – 1 0 The link was down when sending
packets or it was downed while
sending packets from the transmit
memory. The transmit memory is
automatically switched to stop state.

TransmitWaitTriggerIn 0 – 1 0 The next packet in the transmit memory
is waiting for the trigger-in signal to
commence.

TransmitWaitDelay 0 – 1 0 The transmit memory is currently
waiting for the delay counter to finish.

TransmitWaitCredits 0 – 1 0 The transmit memory packet stream is
currently waiting for new credits on the
virtual lane of the packet next in line.

TransmitWaitStep 0 – 1 0 The transmit memory packet stream is
currently waiting for a software data
strobe or a pattern action event.

TransmitWaitLink 0 – 1 0 The transmit memory packet stream is
waiting for the IB link to establish
before it can start. If the link is
interrupted while the transmit memory
is running, TransmitError is signaled.

SendRunning 0 – 1 0 The send buffer is currently active and
trying to send a packet.

SendFinished 0 – 1 0 The send buffer has successfully sent
out a packet.

Properties and Programmatic Settings Status Properties

4-4 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Property Name Range Default Description (if = 1)

SendError 0 – 1 0 The link was down when sending
packet or it was downed while sending
packet from buffer. The send buffer
automatically switches back to stop
mode.

SendWaitTriggerIn 0 – 1 0 The send buffer is waiting for an
external trigger event.

SendWaitDelay 0 – 1 0 The send buffer is waiting for the delay
counter to finish.

SendWaitCredits 0 – 1 0 The send buffer is currently waiting for
credits for its packet.

SendWaitStep 0 – 1 0 The send buffer is currently waiting for
a pattern action or a software data
strobe.

SendWaitLink 0 – 1 0 The send buffer packet is waiting for
the IB link to establish before it can
start. If the link is interrupted while the
send buffer is currently sending the
packet, TransmitError is signaled.

LinkTrainingState -- LINKTRAINSTATE
_DISABLED

Current state of the link training state
machine. The following results are
possible:
LINKTRAINSTATE_DISABLED
LINKTRAINSTATE_POLLACTIVE
LINKTRAINSTATE_POLLQUIET
LINKTRAINSTATE_CFGDEBOUNCE
LINKTRAINSTATE_CFGRCVRCFG
LINKTRAINSTATE_CFGWAITRMT
LINKTRAINSTATE_CFGIDLE
LINKTRAINSTATE_LINKUP
LINKTRAINSTATE_RECRETRAIN
LINKTRAINSTATE_RECWAITRMT
LINKTRAINSTATE_RECIDLE
LINKTRAINSTATE_SLEEPDELAY
LINKTRAINSTATE_SLEEPQUIET

 Status Properties Properties and Programmatic Settings

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 4-5

Property Name Range Default Description (if = 1)

LinkState -- LINKSTATE_DOWN Current state of the link state machine.
The following results are possible:
LINKSTATE_DOWN
LINKSTATE_ARM
LINKSTATE_ACTIVE
LINKSTATE_INIT
LINKSTATE_ACTIVEDEFER

LaneSkew -- 0 Receiver Lane Skew Status:
Bit0-3: LaneA
Bit4-7: LaneB
Bit8-11: LaneC
Bit12-15: LaneD
The unit of the Skew is Symbol Times.

Properties and Programmatic Settings IGCNodeInfo Properties

4-6 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

IGCNodeInfo Properties

The IGCNodeInfo properties are determined by the list of values kept in
the struct NodeInfo for each InfiniBand port. A complete description is
available in the InfiniBand Specification, Section 14.2.5.3.

 Table 10 List of IGCNodeInfo Properties

Property
Name

Range Default Access Description

BaseVersion 0 – 28 1 RO Supported MAD Base Version

ClassVersion 0 – 28 1 RO Supported Subnet Management
Class Version

Type 0 – 28 1 RO The default is to emulate a channel
adapter (=1);

NumPorts 0 – 28 1 RO Number of physical ports on this
node

Reserved32 0 – 264 0 RO Reserved, shall be zero

GUID 0 – 264 0 RO GUID of the end node

PortGUID 0 – 264 0 RO GUID of this port itself

PartitionCap 0 – 216 1 RO Entries in partition table

DeviceID 0 – 216 0x2953 RO Assigned by manufacturer

Revision 0 – 232 1 RO Device Revision

LocalPortNum 0 – 28 1 RO Link Port number for this SMP

VendorID 0 – 224 0x15bc RO Device vendor (IEEE)

 IGCNodeDescription Properties Properties and Programmatic Settings

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 4-7

IGCNodeDescription Properties

The IGCNodeDescription properties are determined by the list of values
kept in the struct NodeDescription for each InfiniBand port. The complete
description is listed in the InfiniBand Specification, Section 14.2.5.2.

 Table 11 List of IGCNodeDescription Properties

Property
Name

Range Default Access Description

NodeStrin
g

512 bit "Agilent E2953A 1x
Generator for InfiniBand"

RO Unicode string to
describe the node in
text format.

IGCGUIDInfo Properties

The IGCGUIDInfo properties are determined by the list of values kept in
the struct GUIDInfo for each InfiniBand port. The complete description is
listed in the InfiniBand Specification, Section 14.2.5.5.

 Table 12 List of IGCGUIDInfo Properties

Property
Name

Range Default Access Description

GUID0
GUID1
GUID2
GUID3
GUID4
GUID5
GUID6
GUID7

0 - 264 0 RW Eight GUID blocks to be
assigned to this port.

Properties and Programmatic Settings IGCPortInfo Properties

4-8 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

IGCPortInfo Properties

The IGCPortInfo properties are determined by the list of values kept in
the struct PortInfo for each InfiniBand port. The complete description is
listed in the InfiniBand Specification, Section 14.2.5.6.

 Table 13 List of IGCPortInfo Properties

Property Name Range in
bits

Default Access Description

M_Key 64 0x0 RW Management key.

GidPrefix 64 0xfe800000:
0x00000000

RW GID Prefix for this port.

LID 16 0xffff RW Base LID for this port.

MasterSMLID 16 0x0 RW Base LID of Master SM.

CapabilityMask 32 0x00000200 RO Supported Capabilities of
this node. See IB Spec for
details.

DiagCode 16 0x0 RO Diagnostic code.

M_KeyLeasePeriod 16 0x0 RW Number of seconds for
M_Key Lease period.

LocalPortNum 8 0x1 RO The link port number this
SMP came in.

LinkWidthEnabled 8 0x1 RW Enabled Link Width, see
IB Spec for details.

LinkWidthSupported 8 0x1 RO Supported Link Width,
see IB Spec for details.

LinkWidthActive 8 0x1 RO Currently active Link
Width, see IB Spec for
details.

LinkSpeedSupported 4 0x1 RO Supported Link Speed,
see IB Spec for details.

PortState 4 0x0 RW Current Port State, see IB
Spec for details.

 IGCPortInfo Properties Properties and Programmatic Settings

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 4-9

Property Name Range in
bits

Default Access Description

PortPhysicalState 4 0x5 RW Current Port physical
state, see IB Spec for
details.

LinkDownDefaultState 4 0x0 RW Link Down State. Only
valid transitions are valid
if writing this field.

M_KeyProtectBits 2 0x0 RW Defines the level of
protection.

Reserved274 3 0 RO Reserved, shall be zero.

LMC 3 0x0 RW LID mask for multipath
support.

LinkSpeedActive 4 0x1 RO Current active link speed.

LinkSpeedEnabled 4 0x1 RW Enabled Link Speed.

NeighborMTU 4 0x1 RW Active Maximum MTU.

MasterSMSL 4 0x0 RW The administrative SL of
the Master.

VLCap 4 0x2 RO Supported Virtual Lanes.

Reserved300 4 0 RO Reserved, shall be zero.

VLHighLimit 8 0x0 RW Limit of high priority
component.

VLArbitrationHighCap 8 0x0 RO VL pairs for high priority.

VLArbitrationLowCap 8 0x0 RO VL pairs for low priority.

Reserved328 4 0 RO Reserved, shall be zero.

MTUCap 4 0x5 RO Maximum MTU
supported.

VLStallCount 3 0x0 RW Number of sequential
packets dropped to enter
the VLStalled state.

HOQLife 5 0x1f RW Time a packet can live at
head of VL queue.

Properties and Programmatic Settings IGCPortInfo Properties

4-10 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Property Name Range in
bits

Default Access Description

OperationalVLs 4 0x2 RW VL operational at this
port.

PartitionEnforcemetInbound 1 0x0 RW Support for optional
partition enforcement
(receiving packets).

PartitionEnformcementOutbound 1 0x0 RW Support for optional
partition enforcement
(transmitting packets).

FilterRawPacketInbound 1 0x0 RW Support for optional raw
packet enforcement
(receiving packets).

FilterRawPacketOutbound 1 0x0 RW Support for optional raw
packet enforcement
(transmitting packets).

M_KeyViolations 16 0x0 RW Number of SMP packets
with invalid M_Keys.

P_KeyViolations 16 0x0 RW Number of SMP packets
with invalid P_Keys.

Q_KeyViolations 16 0x0 RW Number of SMP packets
with invalid Q_Keys.

GUIDCap 8 0x0 RO Number of supported
GUID entries.

Reserved408 3 0 RO Reserved, shall be 0.

SubnetTimeOut 5 0x1f RW Maximum expected
subnet propagation delay.

Reserved416 3 0 RO Reserved, shall be 0.

RespTimeValue 5 0x1f RO Maximum time between
SMP reception and
associated response.

LocalPhyErrors 4 0x0 RW Threshold value for
marginal link errors.

OverrunErrors 4 0x0 RW Threshold value for
overrun errors.

 Packet Properties Properties and Programmatic Settings

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 4-11

Packet Properties

The following lists of properties are used to set up a single packet. The
packet can then be passed to an object of type generator and can either be
sent immediately, or it can be programmed into the transmit memory.

The following lists of properties are part of IGCPacket::IGEPropName or
IGCIGAPacket::IGEPropName. These properties are divided into a general
list of properties (prefix IGP_) and the property lists that belong to the
various headers (prefixes LRH_, ATEH_ and so on).

The properties are different enums, but because they can all be mapped
to an integer and the implementation ensures the values are distinct, the
same ‘set/get’ function can be used for setting/getting all properties.

Properties and Programmatic Settings Packet Properties

4-12 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Generic Packet Properties
Packet properties consist of pure packet properties as well as header and
payload settings necessary to make up an InfiniBand packet.

 Table 14 Property List (Generic Portion)

Property Name Range Default Description

IGP_InterPacketDelayOffset 0 - 3 0 Inter Packet Delay (before this packet). The
real value ‘d’ for the delay is calculated
using the following formula:
d = offset + 8exponent - 1

IGP_InterPacketDelayExponent 0 - 7 0 See property above.

IGP_Repeat 0 - 3 0 Defines the repeat counter to be taken for
this packet. A value of 0 means a fix repeat
value of 1. All other repeat counter values
can be set as generator properties.

IGP_InsertError 0 – 6 0 = no error Code for the error to be inserted at the end
of the packet. For a detailed list of error
codes see error list (next table).

IGP_BadICRC 0 – 1 0 Create bad ICRC.

IGP_BadVCRC 0 – 1 0 Create bad VCRC.

IGP_IgnoreCredit 0 – 1 0 Ignore Credit status (send anyway).

IGP_AutoCalculatePSN 0 - 1 1 =
autocalculate

Calculate the PSN automatically starting
with a generic start value out of a register.

IGP_PayloadSize 0 -
4096

0 Payload Size in Bytes.

IGP_UsePRBS 0 - 1 0 =no PRBS Use PRBS instead of programmed payload.

IGP_WaitTriggerIn 0 - 1 0 = do not
wait

Wait for trigger in.

IGP_AssertTriggerOut 0 – 1 0 = do not
assert

Assert trigger out (at beginning of packet
before inter packet delay starts).

IGP_WaitStep 0 - 1 0 = do not
wait

Wait for a TransmitStep event (puts a
packet on hold until the user issues a
TransmitStep call or a pattern term
asserts this signal, which allows waiting
for software controlled acknowledges or
specific external events (via pattern term).

 Packet Properties Properties and Programmatic Settings

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 4-13

Error insertion using an error code is done at the end of a packet. The
worst test case for the receiving decoder occurs when any of the symbols
listed in the following table are received, with the exception of EGP (end
of good packet).

Sending four running disparity errors within 16 symbol clocks amounts
to a check whether the InfiniBand link automatically reinitializes (see the
table below).

 Table 15 Error Code Table for Generic Packet Properties

Appended Symbol Value Description

EGP 0 Ends a packet with the ‘end of good
packet’ symbol.

EBP 1 Ends a packet with the ‘end of bad
packet’ symbol.

SLP 2 Ends a packet with the ‘start of link
packet’ symbol.

SDP 3 Ends a packet with the ‘start of data
packet symbol’.

Invalid Code Group 4 Sends out an invalid code group instead
of EGP. The invalid code group can be
specified in a generator property.

Running Disparity Error 5 Inserts a running disparity error.

Running Disparity Error
Burst

6 Inserts 4 running disparity errors spread
out over 16 symbols.

Reserved 7 Not used.

Properties and Programmatic Settings Packet Properties

4-14 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Local Routing Header Properties
These are also part of the IGCPacket::IGEPropName property values. The
following lists of properties give an overview of what can be set within an
InfiniBand packet. The lists follow very much the specification for
InfiniBand headers.

 Table 16 Part of IGCPacket::IGEPropName: Local Routing Header Props

Property Name Range Default Description

LRH_VL 0 - 15 0 Virtual Lane.

LRH_LVer 0 - 15 0 Link Version.

LRH_SL 0 - 15 0 Service Level.

LRH_Resv12 0 - 4 0 Reserved_lrh1.

LRH_LNH 0 - 4 Precalculated
according to the
packet type.

Link Next Header. Can be
overwritten by the user.

LRH_DLID 0 - 65535 0 Destination Local ID.

LRH_Resv32 0 - 31 0 Reserved_lrh2

LRH_PktLen 0 - 2047 0 Packet Length

LRH_SLID 0 – 65535 0 Source Local ID. This property gets
set with the correct value from the
generator using the method
IGCGenerator::PacketInit.

 Packet Properties Properties and Programmatic Settings

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 4-15

Global Routing Header Properties
This list of properties shows what you can set in the global routing
header (if present).

 Table 17 IGCIBAPacket::IGEPropName: Global Routing Header Props

Property Name Range Default Description

GRH_IPVer 0 - 15 6 IP Version.

GRH_TClass 0 - 255 0 Traffic Class.

GRH_FlowLabel 0 – 220 0 Flow Label.

GRH_PayLen 0 – 65535 0 Payload Length.

GRH_NxtHdr 0 - 255 Pre-calculated Next Header.

GRH_HopLmt 0 - 255 User Hop Limit.

GRH_SGID 0 – 2128 0 Source GID. This property gets
set from the generator using the
method
IGCGenerator::PacketInit.

GRH_DGID 0 – 2128 0 Destination GID.

Properties and Programmatic Settings Packet Properties

4-16 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Base Transport Header Properties
This header is present in all packets.

 Table 18 IGCIBAPacket::Prop: Base Transport Header Properties

Property Name Range Default Description

BTH_OpCode IGCVal::Opcode 0 Opcode. To use a reserved opcode
specify the value as ig_int32.

BTH_SE 0 - 1 0 Solicited Event.

BTH_M 0 - 1 User Migration State.

BTH_PadCnt 0 - 4 Pre-calculated Pad Count.

BTH_TVer 0 - 16 0 Transport Header Version.

BTH_P_KEY 0 - 65535 0 Partition Key.

BTH_Reserved32 0 - 255 0 Reserved (variant).

BTH_DestQP 0 – 224 0 Destination QP.

BTH_A 0 - 1 0 Acknowledge Request.

BTH_Reserved65 0 - 128 0 Reserved.

BTH_PSN 0 – 224 0 Packet Sequence Number.

 Packet Properties Properties and Programmatic Settings

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 4-17

Extended Transport Header Fields
Depending on the opcode, different types of extended header fields are
present. These fields and the appropriate property values are listed
below. The Reliable Datagram Extended Transport Header (RDETH) is
always present if the packet is part of a reliable datagram message.

 Table 19 Reliable Datagram Extended Transport Header (RDETH)

Property Name Range Default Description

RDETH_Reserved0 0 - 255 0 Reserved.

RDETH_EECnxt 0 – 224 0 EE-context

The Datagram Extended Transport Header (DETH) is present in every
packet that is part of a datagram request message.

 Table 20 Datagram Extended Transport Header (DETH) Properties

Property Name Range Default Description

DETH_Q_Key 0 – 232 0 Queue Key.

DETH_Reserved32 0 - 255 0 Reserved.

DETH_SrcQP 0 – 224 0 Source QP.

The RDMA Extended Transport Header is present in the first packet of a
RDMA (Remote Direct Memory Access) request message.

Properties and Programmatic Settings Packet Properties

4-18 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

 Table 21 RDMA Extended Transport Header Property List

Property Name Range Default Description

RETH_VA 0 – 264 0 Virtual Address.

RETH_R_Key 0 – 232 0 Remote Key.

RETH_DMALen 0 – 232 0 DMA Length.

The Atomic Extended Transport Header is present in atomic request
messages.

 Table 22 Atomic Extended Transport Header (AtomicTEH) Property List

Property Name Range Default Description

AtomicETH_VA 0 – 264 0 Virtual Address.

AtomicETH R_Key 0 – 232 0 Remote Key.

AtomicETH _SwapDt 0 – 264 0 Swap (or Add) Data.

AtomicETH _CmpDt 0 – 264 0 Compare Data.

The ACK Extended Transport Header is present in all ACK packets,
including the first and last packet of a message for RDMA Read Response
packets.

 Table 23 ACK Extended Transport Header (AETH) Property List

Property Name Range Default Description

AETH_Syndrome 0 - 255 0 Syndrome

AETH_MSN 0 – 224 0 Message Sequence Number.

The Atomic ACK Extended Transport Header is present in all Atomic
ACK packets.

 Packet Properties Properties and Programmatic Settings

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference 4-19

 Table 24 Atomic ACK Extended Transport Header Property List

Property Name Range Default Description

AtomicAckETH_OrigRemDt 0 – 264 0 Original Remote Data.

The Immediate Data Extended Transport Header is present in the last
packet of a request with immediate data.

 Table 25 Immediate Data Extended Transport Header Property List

Property Name Range Default Description

ImmDt 0 – 232 0 Immediate Data.

The payload for the packet either comes out of a PRBS (generic packet
property) or is handed to the software as a pointer to a data array. Only
one behavior is needed to specify the payload size. This is controlled by a
generic packet property.

The software calculates the invariant CRC and the variant CRC
automatically. Generic packet properties are available to let you create
incorrect CRCs.

Properties and Programmatic Settings Packet Properties

4-20 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Agilent Technologies E2950 Series InfiniBand Exerciser API Reference Index-1

Index

E

error handling 1-5

B

base transport header properties 4-16

C

classes of the c++ interface 2-1

classes of the c++ interface
error class 2-15
igclinkpacketstatus class 2-14
igcperformance class 2-12
miscellaneous classes 2-15
subnet management attribute
classes 2-10

control command language 1-9

E

enumeration definitions 3-1

exception handling 1-5

extended transport header fields 4-17

F

fields
extended transport header 4-17

G

generator classes 2-2

generator properties 4-1

generic packet properties 4-12

global routing header properties 4-15

L

local routing header properties 4-14

M

methods common to all classes 2-16

methods
igcgenerator class 2-18
igcgeneratorlist class 2-53
error class 2-116
igcbuffer class 2-85
igcgeneratorinfo class 2-57
igcibapacket class 2-75
igcmadpacket class 2-79
igcobject class 2-100
igcpacket class 2-60
igcrawippacket class 2-72
igcrawpacket class 2-69
igcstatus class 2-103
igcval class 2-93

P

packet classes 2-2

packet handler classes 2-4

packet handling concept 1-1

programming the E2953A 1-1

programming the E2953A/E2954A
performance measurement 1-7

properties and programmatic settings
 4-1

properties
base transport header 4-16
generator 4-1
generic packet 4-12
global routing header 4-15
igcportinfo 4-11
local routing header 4-14
packet 4-11

S

subnet management agent 1-9

Index

Index-2 Agilent Technologies E2950 Series InfiniBand Exerciser API Reference

Publication Number: 5988-5061EN

	Table of Contents
	Programming the E2953A/E2954A
	Packet Handling Concept
	Sending Packets
	Receiving Packets
	Exception and Error Handling

	Performance Measurement
	Link Packet and Protocol Observer
	Control Command Language
	TCL Interface
	Installed TCL Sample Scripts

	Classes of the C++ Interface
	C++ Interface
	Generator Class
	Packet Classes
	Packet Handler Classes
	CallBack Classes
	Property Value Class
	MAD Attribute Classes
	Subnet Management Attribute Classes
	IGCPerformance Class
	IGCProtocolObserver Class
	IGCLinkPacketStatus Class
	Error Class
	Miscellaneous Classes

	Methods Common to All Classes
	Print
	Operator <<

	Methods of the IGCGenerator Class
	AssertTriggerOut
	Connect
	Disconnect
	EnableMADHandling
	GetInfo
	GetSubnMgmtAttribute
	HardwareUpdate
	IBLinkReset
	IsMADHandling
	IsConnected
	IGCGenerator, Constructor
	~IGCGenerator, Destructor
	LaneSkewGet
	LaneSkewSet
	LinkPacketRecRun
	LinkPacketRecStop
	LinkStateWrite
	LinkPacketStatusRead
	LinkTrainingStateWrite
	OperationalVLRead
	OperationalVLWrite
	PacketInit
	PacketSend
	PatternActionWrite
	PatternMaskWrite
	PatternOffsetWrite
	PatternValueWrite
	PerformanceCtrMaskRead
	PerformanceCtrMaskWrite
	PerformanceRead
	PerformanceStart
	PerformanceStop
	Ping
	ProtocolObserverRead
	ProtocolObserverReset
	RegisterCallBack
	RegisterPacketHandler
	Reset
	ResetPacketSend
	SkipTestRun
	StatusRead
	TransmitInit
	TransmitProg
	TransmitRun
	TransmitSet
	TransmitStep
	TransmitStop
	UnregisterCallBack
	UnregisterPacketHandler
	VLAllResourceRead
	VLAllResourceWrite
	VLResourceRead
	VLResourceWrite
	VLStateRead
	VLStateWrite

	Methods of the IGCGeneratorList Class
	IGCGeneratorList, Constructor
	~IGCGeneratorList, Destructor
	Count
	Get
	Operator[]
	Rescan

	Methods of the IGCGeneratorInfo Class
	GetPort
	GetSerial
	GetProductString
	Print

	Methods of the IGCPacket Class
	AppendBuffer
	AppendPayloadBuffer
	Clone
	DeletePacket
	GetActualLength
	GetICRC
	GetType
	GetPayload
	GetVCRC
	HasPayload
	IGCPacket, Destructor
	NewPacket
	SetPacketLength
	SetPayload
	SetPRBSPayloadSize

	Methods of the IGCRawPacket Class
	IGCRawPacket, Constructor
	IGCRawPacket, Destructor

	Methods of the IGCRawIPPacket Class
	IGCRawIPPacket, Constructor
	IGCRawIPPacket, Destructor

	Methods of the IGCIBAPacket Class
	Init
	IGCIBAPacket, Default Constructor
	IGCIBAPacket, Constructor for the Class
	~IGCIBAPacket, Destructor

	Methods of the IGCMADPacket Class
	IGCMADPacket, Constructor
	~IGCMADPacket, Destructor

	Methods of the IGCSMPPacket Class
	IGCSMPPacket, Constructor
	~IGCSMPPacket, Destructor

	Methods of the IGCBuffer Class
	IGCBuffer, Constructor
	IGCBuffer, Destructor
	ReadFile
	WriteFile
	SaveFile
	Cmp
	PeekData
	Push
	Pop
	PopData
	SetAt
	Size
	GetAt
	Fill
	FillRandom
	Init

	Methods of the IGCVal Class
	IGCVal, Constructor
	IGCVal, Destructor
	Constructor by Type
	Copy Constructor
	Type Conversions
	Const Conversions
	Non Const Conversions
	Assignments
	Comparisons

	Methods of the IGCObject Class
	Set
	Get
	Default
	CopyProps

	Methods of the IGCStatus Class
	IGCStatus, Constructor
	~IGCStatus, Destructor
	Print

	Methods of the IGCPacketHandler Class
	~IGCPacketHandler, Destructor
	CheckPacket
	HandlePacket
	GetGenerator

	Methods of the IGCPacketHandlerTcl Class
	IGCPacketHandlerTcl
	~IGCPacketHandlerTcl, Destructor

	Methods of the IGCCallBack Class
	IGCCallBack, Constructor
	~IGCCallBack, Destructor
	Notify
	SetNotifyMask
	QueryNotifyMask

	Methods of the IGCCallBackTcl Class
	IGCCallBackTcl

	Methods of the Error Class
	Clear
	Error
	IGCError, Constructor
	IGCError, Copy Constructor
	IGCError, Destructor
	GetErrorText
	Operator
	Print

	Enumeration Definitions
	EErrtype
	IGCGenerator::IGEPropName
	IGCPacket::IGEPropName
	IGCVal::Opcode

	Properties and Programmatic Settings
	Generator Properties
	Status Properties
	IGCNodeInfo Properties
	IGCNodeDescription Properties
	IGCGUIDInfo Properties
	IGCPortInfo Properties
	Packet Properties
	Generic Packet Properties
	Local Routing Header Properties
	Global Routing Header Properties
	Base Transport Header Properties
	Extended Transport Header Fields

	Index
	5988-5061EN_old.pdf
	About this Manual
	Safety Summary
	Document History

	Table of Contents
	Overview
	InfiniBand
	InfiniBand Specification

	General Description
	Programming Interface

	Platform Relevant Information
	Features
	External Connections
	Synchronization of Multiple Generators
	Receive and Transmit Memory
	Licensing

	Testing Capabilities of the E2953A
	Physical Layer
	Link Layer
	Network Layer
	Transport Layer

	Testing Capabilities in terms of Concrete Tests
	Code Group Test
	Packet Test
	MAD Test
	Transport Test

	Getting Started with the Generator for InfiniBand
	Installation Procedure
	Installing the Software
	Setting Up the Generator
	Your First InfiniBand Traffic

	Hardware Description
	System Components/Packing List
	The Generator for InfiniBand Unit
	AC Power Source
	PC Connection
	Generator PC Requirements

	Programming the E2953A
	Packet Handling Concept
	Sending Packets
	Receiving Packets
	Exception and Error Handling

	Control Command Language
	Tcl Interface
	Tcl Command Listing

	Classes of the C++ Interface
	C++ Interface
	Generator Class
	Packet Classes
	Packet Handler Classes
	Property Value Class
	Data Classes
	Error Class
	Miscellaneous Classes

	Methods Common to All Classes
	Print
	Operator <<

	Methods of the IGCGenerator Class
	AssertTriggerOut
	Connect
	Disconnect
	EnableMADHandling
	GetInfo
	IBLinkReset
	IGCGenerator, Constructor
	~IGCGenerator, Destructor
	LinkStateWrite
	LinkTrainingStateWrite
	PacketInit
	PacketSend
	PatternActionWrite
	PatternMaskWrite
	PatternOffsetWrite
	PatternValueWrite
	RegisterPacketHandler
	Reset
	ResetPacketSend
	StatusRead
	TransmitInit
	TransmitProg
	TransmitRun
	TransmitSet
	TransmitStep
	TransmitStop
	UnregisterPacketHandler
	VLResourceRead
	VLResourceWrite
	VLStateRead
	VLStateWrite

	Methods of the IGCGeneratorList Class
	IGCGeneratorList, Constructor
	~IGCGeneratorList, Destructor
	Count
	Get
	Operator[]
	Rescan

	Methods of the IGCGeneratorInfo Class
	GetPort
	GetSerial
	GetProductString
	Print

	Methods of the IGCPacket Class
	AppendBuffer
	AppendPayloadBuffer
	Clone
	DeletePacket
	GetActualLength
	GetType
	IGCPacket, Destructor
	NewPacket
	SetPacketLength
	SetPayload
	SetPRBSPayloadLength

	Methods of the IGCRawPacket Class
	IGCRawPacket, Constructor
	IGCRawPacket, Destructor

	Methods of the IGCRawIPPacket Class
	IGCRawIPPacket, Constructor
	IGCRawIPPacket, Destructor

	Methods of the IGCIBAPacket Class
	Init
	IGCIBAPacket, Default Constructor
	IGCIBAPacket, Constructor for the Class
	~IGCIBAPacket, Destructor

	Methods of the IGCMADPacket Class
	IGCMADPacket, Constructor
	~IGCMADPacket, Destructor

	Methods of the IGCBuffer Class
	IGCBuffer, Constructor
	IGCBuffer, Destructor
	ReadFile
	WriteFile
	Cmp
	Push
	Pop
	SetAt
	GetAt
	Fill
	Init

	Methods of the IGCVal Class
	IGCVal, Constructor
	IGCVal, Destructor
	Constructor by Type
	Copy Constructor
	Type Conversions
	Const Conversions
	Non Const Conversions
	Assignments
	Comparisons

	Methods of the IGCObject Class
	Set
	Get
	Default
	CopyProps

	Methods of the IGCStatus Class
	IGCStatus, Constructor
	~IGCStatus, Destructor
	Print

	Methods of the IGCPacketHandler Class
	~IGCPacketHandler, Destructor
	CheckPacket
	HandlePacket
	GetGenerator

	Methods of the IGCPacketHandlerTcl Class
	IGCPacketHandlerTcl
	~IGCPacketHandler, Destructor

	Methods of the Error Class
	Clear
	Error
	IGCError, Constructor
	IGCError, Copy Constructor
	IGCError, Destructor
	GetErrorText
	Operator
	Print

	Enumeration Definitions
	EErrtype
	IGCGenerator::IGEPropName
	IGCPacket::IGEPropName
	IGCVal::Opcode

	Properties and Programmatic Settings
	Generator Properties
	Status Properties
	IGCNodeInfo Properties
	IGCNodeDescription Properties
	IGCGUIDInfo Properties
	IGCPortInfo Properties
	Packet Properties
	Generic Packet Properties
	Local Routing Header Properties
	Global Routing Header Properties
	Base Transport Header Properties
	Extended Transport Header Fields

	Specifications
	Operating Characteristics
	Certification
	Power Requirements

	Glossary
	Index

